Skip to main content
Log in

CD3ζ Expression and T Cell Proliferation are Inhibited by TGF-β1 and IL-10 in Cervical Cancer Patients

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Cervical cancer development from a squamous intraepithelial lesion is thought to be favored by an impaired T cell immunity. We evaluated parameters of T cell alterations such as proliferation, cytokine, and CD3ζ expression in peripheral blood and tumor-infiltrating T lymphocytes from women with squamous intraepithelial lesions (SIL) or cervical cancer (CC).

Results and Discussion

T cell proliferation and cytokine messenger RNA (mRNA) expression were similar in women with SIL and healthy donors, whereas low T cell proliferation and lower mRNA expression of IL-2, IL-10 and IFN-γ were observed in women with CC. Moreover, infiltrating cells showed marginal responses. We also found that CD3ζ mRNA expression, whose protein is required for T cell activation, correlated with a decreased proliferation in advanced stages of the disease.

Conclusion

Experiments with T cells from healthy donors in the presence TGF-β1 or IL-10 suggest that these cytokines have a relevant role in T cell responses during CC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitchell MF, Hittelman WN, Hong WK, Lotan R, Schottenfeld D. The natural history of cervical intraepithelial neoplasia: an argument for intermediate endpoint biomarkers. Cancer Epidemiol Biomarkers Prev. 1994;3:619–26.

    PubMed  CAS  Google Scholar 

  2. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJF, Peto J, Meijer CJ, Muñoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9. doi:10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  3. Melbye M, Palefsky J, Gonzales J, Ryder LP, Nielsen H, Bergmann O, Pindborg J, Biggar RJ. Immune status as a determinant of human papillomavirus detection and its association with anal epithelial abnormalities. Int J Cancer. 1990;46:203–6. doi:10.1002/ijc.2910460210.

    Article  PubMed  CAS  Google Scholar 

  4. Gentile G, Formelli G, Orsoni G, Rinaldi AM, Busacchi P. Immunosuppression and human genital papillomavirus infection. Eur J Gynaecol Oncol. 1991;12:79–81.

    PubMed  CAS  Google Scholar 

  5. Nasiell K, Nasiell M, Vaćlavinková V. Behavior of moderate cervical dysplasia during long-term follow-up. Obstet Gynecol. 1983;61:609–14.

    PubMed  CAS  Google Scholar 

  6. Park TK, Kim SN. Cell-mediated immunity in patients with invasive carcinoma of the cervix. Yonsei Med J. 1989;30:164–72.

    PubMed  CAS  Google Scholar 

  7. Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol. 2003;4:835–42. doi:10.1038/ni969.

    Article  PubMed  CAS  Google Scholar 

  8. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 2006;24:677–88. doi:10.1016/j.immuni.2006.06.002.

    Article  PubMed  CAS  Google Scholar 

  9. Damoiseaux J. Regulatory T cells: back to the future. Neth J Med. 2006;64:4–9.

    PubMed  CAS  Google Scholar 

  10. Robertson SJ, Hasenkrug KJ. The role of virus-induced regulatory T cells in immunopathology. Springer Semin Immunopathol. 2006;28:51–62. doi:10.1007/s00281-006-0019-2.

    Article  PubMed  CAS  Google Scholar 

  11. Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM, Huang SC. Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol. 2001;167:2972–8.

    PubMed  CAS  Google Scholar 

  12. Alcocer-González JM, Berumen J, Taméz-Guerra R, Bermúdez-Morales V, Peralta-Zaragoza O, Hernández-Pando R, Moreno J, Gariglio P, Madrid-Marina V. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol. 2006;19:481–91. doi:10.1089/vim.2006.19.481.

    Article  PubMed  Google Scholar 

  13. Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A, Tibaudi D, Robecchi A, Emanuelli G, Rodeck U. Tumor-associated transforming growth factor-β and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol. 1999;155:537–47.

    PubMed  CAS  Google Scholar 

  14. Inge TH, McCoy KM, Susskind BM, Barrett SK, Zhao G, Bear HD. Immunomodulatory effects of transforming growth factor-β on T lymphocytes. Induction of CD8 expression in the CTLL-2 cell line and in normal thymocytes. J Immunol. 1992;148:3847–56.

    PubMed  CAS  Google Scholar 

  15. Espevik T, Figari IS, Shalaby MR, Lackides GA, Lewis GD, Shepard HM, Palladino MA. Inhibition of cytokine production by cyclosporin A and transforming growth factorβ. J Exp Med. 1987;166:571–6. doi:10.1084/jem.166.2.571.

    Article  PubMed  CAS  Google Scholar 

  16. Edwards RP, Kuykendall K, Crowley-Nowick P, Partridge EE, Shingleton HM, Mestecky J. T lymphocytes infiltrating advanced grades of cervical neoplasia. CD8-positive cells are recruited to invasion. Cancer. 1995;76:1411–5. doi:10.1002/1097-0142(19951015)76:8<1411::AID-CNCR2820760817>3.0.CO;2-V.

    Article  PubMed  CAS  Google Scholar 

  17. Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007;67:354–61. doi:10.1158/0008-5472.CAN-06-3388.

    Article  PubMed  CAS  Google Scholar 

  18. Kuss I, Saito T, Johnson JT, Whiteside TL. Clinical significance of decreased ζ chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin Cancer Res. 1999;5:329–34.

    PubMed  CAS  Google Scholar 

  19. Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, Petersson M, Kast WM, Kiessling R. Decreased expression of signal-transducing ζ chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res. 1996;2:1825–8.

    PubMed  CAS  Google Scholar 

  20. de Gruijl TD, Bontkes HJ, Peccatori F, Gallee MP, Helmerhorst TJ, Verheijen RH, Aarbiou J, Mulder WM, Walboomers JM, Meijer CJ, van de Vange N, Scheper RJ. Expression of CD3-ζ on T-cells in primary cervical carcinoma and in metastasis-positive and -negative pelvic lymph nodes. Br J Cancer. 1999;79:1127–32. doi:10.1038/sj.bjc.6690179.

    Article  PubMed  Google Scholar 

  21. Klausner RD, Samelson LE. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991;64:875–8. doi:10.1016/0092-8674(91)90310-U.

    Article  PubMed  CAS  Google Scholar 

  22. Whiteside TL, Miescher S, MacDonald HR, Von Fliedner V. Separation of tumor-infiltrating lymphocytes from tumor cells in human solid tumors. A comparison between velocity sedimentation and discontinuous density gradients. J Immunol Methods. 1986;90:221–33. doi:10.1016/0022-1759(86)90079-7.

    Article  PubMed  CAS  Google Scholar 

  23. de Gruijl TD, Bontkes HJ, van den Muysenberg AJ, van Oostveen JW, Stukart MJ, Verheijen RH, van der Vange N, Snijders PJ, Meijer CJ, Wallboomers JM, Scheper RJ. Differences in cytokine mRNA profiles between pre-malignant and malignant lesions of the uterine cervix. Eur J Cancer. 1999;35:490–7. doi:10.1016/S0959-8049(98)00371-2.

    Article  PubMed  Google Scholar 

  24. Bañuelos A, Reyes E, Ocadiz R, Alvarez E, Moreno M, Monroy A, Gariglio P. Neocarzinostatin induces an effective p53-dependent response in human papillomavirus-positive cervical cancer cells. J Pharmacol Exp Ther. 2003;306:671–80. doi:10.1124/jpet.103.051557.

    Article  PubMed  Google Scholar 

  25. Santin AD, Ravaggi A, Bellone S, Pecorelli S, Cannon M, Parham GP, Hermonat PL. Tumor-infiltrating lymphocytes contain higher numbers of type 1 cytokine expressors and DR+ T cells compared with lymphocytes from tumor draining lymph nodes and peripheral blood in patients with cancer of the uterine cervix. Gynecol Oncol. 2001;81:424–32. doi:10.1006/gyno.2001.6200.

    Article  PubMed  CAS  Google Scholar 

  26. Verduzca-Rodríguez LA, Palet-Guzmán JA, Aguirre-González H, González-Puebla E. Cervico-uterine cancer and age. Ginecol Obstet Mex. 1997;65:119–22.

    PubMed  Google Scholar 

  27. Matour D, Melnicoff M, Kaye D, Murasko DM. The role of T cell phenotypes in decreased lymphoproliferation of the elderly. Clin Immunol Immunopathol. 1989;50:82–99. doi:10.1016/0090-1229(89)90224-9.

    Article  PubMed  CAS  Google Scholar 

  28. Curfs JH, Meis JF, Hoogkamp-korstanje JA. A primer on cytokines: sources, receptors, effects and inducers. Clin Microbiol Rev. 1997;10:742–80.

    PubMed  CAS  Google Scholar 

  29. Fattorossi A, Battaglia A, Ferrandina G, Buzzonetti A, Legge F, Salutari V, Scambia G. Lymphocyte composition of tumor draining lymph nodes from cervical and endometrial cancer patients. Gynecol Oncol. 2004;92:106–15. doi:10.1016/j.ygyno.2003.09.020.

    Article  PubMed  CAS  Google Scholar 

  30. Clerici M, Merola M, Ferrario E, Trabattoni D, Villa ML, Stefanon B, Venzon DJ, Shearer GM, De Palo G, Clerici E. Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. J Natl Cancer Inst. 1997;89:245–50. doi:10.1093/jnci/89.3.245.

    Article  PubMed  CAS  Google Scholar 

  31. Bais AG, Beckmann I, Lindemans J, Ewing PC, Meijer CJ, Snijders PJ, Helmerhorst TJ. A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions. J Clin Pathol. 2005;58:1096–100. doi:10.1136/jcp.2004.025072.

    Article  PubMed  CAS  Google Scholar 

  32. Castle PE, Hildesheim A, Bowman FP, Strickler HD, Walker JL, Pustilnik T, Edwards RP, Crowley-Nowick PA. Cervical concentrations of interleukin-10 and interleukin-12 do not correlate with plasma levels. J Clin Immunol. 2002;22:23–7. doi:10.1023/A:1014252402630.

    Article  PubMed  CAS  Google Scholar 

  33. Gey A, Kumari P, Sambandam A, Lecuru F, Cassard L, Badoual C, Fridman C, Nagarajan B, Fridman WH, Tartour E. Identification and characterisation of a group of cervical carcinoma patients with profound downregulation of intratumoral type 1 (IFNgamma) and Type 2 (IL-4) cytokine mRNA expression. Eur J Cancer. 2003;39:595–603. doi:10.1016/S0959-8049(02)00839-0.

    Article  PubMed  CAS  Google Scholar 

  34. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MGA. CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389:737–42. doi:10.1038/39614.

    Article  PubMed  CAS  Google Scholar 

  35. Robertson SJ, Hasenkrug KJ. The role of virus-induced regulatory T cells in immunopathology. Springer Semin Immunopathol. 2006;28:51–62. doi:10.1007/s00281-006-0019-2.

    Article  PubMed  CAS  Google Scholar 

  36. von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol. 2005;6:338–44. doi:10.1038/ni1180.

    Article  Google Scholar 

  37. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM. Conversion of peripheral CD4+ CD25 naive T cells to CD4+ CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86. doi:10.1084/jem.20030152.

    Article  PubMed  CAS  Google Scholar 

  38. Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol. 2001;166:7282–9.

    PubMed  CAS  Google Scholar 

  39. Baniyash M. TCR ζ-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol. 2004;4:675–87. doi:10.1038/nri1434.

    Article  PubMed  CAS  Google Scholar 

  40. Tsuzaka K, Nozaki K, Kumazawa C, Shiraishi K, Setoyama Y, Yoshimoto K, Abe T, Takeuchi T. TCRζ mRNA splice variant forms observed in the peripheral blood T cells from systemic lupus erythematosus patients. Springer Semin Immunopathol. 2006;28:185–93. doi:10.1007/s00281-006-0035-2.

    Article  PubMed  CAS  Google Scholar 

  41. Gastman BR, Johnson DE, Whiteside TL, Rabinowich H. Caspase-mediated degradation of T-cell receptor ζ-chain. Cancer Res. 1999;59:1422–7.

    PubMed  CAS  Google Scholar 

  42. Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci U S A. 1996;93:13119–24. doi:10.1073/pnas.93.23.13119.

    Article  PubMed  CAS  Google Scholar 

  43. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladona ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176:6752–61.

    PubMed  CAS  Google Scholar 

  44. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3ζ chain expression by L-arginine. J Biol Chem. 2002;277:21123–9. doi:10.1074/jbc.M110675200.

    Article  PubMed  CAS  Google Scholar 

  45. Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O, Saito S. Expression of indoleamine 2,3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci. 2007;98:874–81. doi:10.1111/j.1349-7006.2007.00470.x.

    Article  PubMed  CAS  Google Scholar 

  46. Sales KJ, Katz AA, Davis M, Hinz S, Soeters RP, Hofmeyr MD, Millar RP, Jabbour HN. Cyclooxygenase-2 expression and prostaglandin E2 synthesis are up-regulated in carcinomas of the cervix: a possible autocrine/paracrine regulation of neoplastic cell function via EP2/EP4 receptors. J Clin Endocrinol Metab. 2001;86:2243–9. doi:10.1210/jc.86.5.2243.

    Article  PubMed  CAS  Google Scholar 

  47. Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005;65:5211–20. doi:10.1158/0008-5472.CAN-05-0141.

    Article  PubMed  CAS  Google Scholar 

  48. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase-2 transcription is regulated by human papillomavirus 16 E6 and E7 oncoproteins: evidence of a corepressor/coactivator exchange. Cancer Res. 2007;67:3976–85. doi:10.1158/0008-5472.CAN-06-4273.

    Article  PubMed  CAS  Google Scholar 

  49. Tjiong MY, van der Vange N, ter Schegget JS, Burger MPM, ten Kate FWJ, Out TA. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine. 2001;14:357–60. doi:10.1006/cyto.2001.0909.

    Article  PubMed  CAS  Google Scholar 

  50. von Bernstorff W, Voss M, Freichel S, Schmid A, Vogel I, Jöhnk C, Henne-Bruns D, Kremer B, Kalthoff H. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res. 2001;7:925s–32s.

    Google Scholar 

  51. Kong FM, Anscher MS, Murase T, Abbott BD, Iglehart JD, Jirtle RL. Elevated plasma transforming growth factor-β1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg. 1995;222:155–62. doi:10.1097/00000658-199508000-00007.

    Article  PubMed  CAS  Google Scholar 

  52. Dummer W, Becker JC, Schwaaf A, Leverkus M, Moll T, Bröcker EB. Elevated serum levels of interleukin-10 in patients with metastatic malignant melanoma. Melanoma Res. 1995;5:67–8. doi:10.1097/00008390-199502000-00008.

    Article  PubMed  CAS  Google Scholar 

  53. Whiteside TL. Down-regulation of ζ-chain expression in T cell: a biomarker of prognosis in cancer? Cancer Immunol Immunother. 2004;53:865–78.

    PubMed  CAS  Google Scholar 

  54. Arany I, Grattendick KG, Tyring SK. Interleukin-10 induces transcription of the early promoter of human papillomavirus type 16 (HPV16) through the 5′-segment of the upstream regulatory region (URR). Antiviral Res. 2002;55:331–9. doi:10.1016/S0166-3542(02)00070-0.

    Article  PubMed  CAS  Google Scholar 

  55. Peralta-Zaragoza O, Bermudez-Morales V, Gutierrez-Xicotencatl L, Alcocer-Gonzalez J, Recillas-Targa F, Madrid-Marina V. E6 and E7 oncoproteins from human papillomavirus type 16 induce activation of human transforming growth factor β1 promoter throughout Sp1 recognition sequence. Viral Immunol. 2006;19:468–80. doi:10.1089/vim.2006.19.468.

    Article  PubMed  CAS  Google Scholar 

  56. Kadish AS, Ho GY, Burk RD, Wang Y, Romney SL, Ledwidge R, Angeletti RH. Lymphoproliferative responses to human papillomavirus (HPV) type 16 proteins E6 and E7: outcome of HPV infection and associated neoplasia. J Natl Cancer Inst. 1997;89:1285–93. doi:10.1093/jnci/89.17.1285.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the volunteers participating in this study as well as the staff of the Departments of Pathology and Surgery from the general hospitals. We also appreciate the kindness of Dr. Celso Ramos (INSP) and Dr. Raúl Barrera (INER) for sharing some instruments for the proliferation technique; the willingness to share some technical tips for TIL isolation of Dr. Llorente (INNSSZ); and the technical advice of Milena Saki and Hector Maldonado (INNSSZ), Patricia Rojo and Gibrán Pérez (Dr. Morenos’s lab), and Carla Olvia (INSP). This work was supported by the Instituto Nacional de Salud Pública in Mexico and grants from CONACYT-SEP 49574-24483-M, Mexico. C.E. Díaz Benítez was a recipient of a fellowship from CONACYT. This work was submitted in partial fulfillment of the requirements for the PhD. degree of Díaz Benítez C. E. from the Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Madrid-Marina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Benítez, C.E., Navarro-Fuentes, K.R., Flores-Sosa, J.A. et al. CD3ζ Expression and T Cell Proliferation are Inhibited by TGF-β1 and IL-10 in Cervical Cancer Patients. J Clin Immunol 29, 532–544 (2009). https://doi.org/10.1007/s10875-009-9279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9279-7

Keywords

Navigation