Skip to main content

Advertisement

Log in

Association of Graves’ Disease and Prevalence of Circulating IFN-γ-producing CD28 T Cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Peripheral blood CD4+ and CD8+ T-cell subsets lacking surface CD28 have been suggested to predispose patients to immune-mediated disorders.

Materials and Methods

To determine the role of CD28 T-cell subset in Graves’ disease (GD), we characterized peripheral blood CD4+CD28 and CD8+CD28 T cell from early onset GD patients.

Results and Discussion

GD patients had significantly higher percentages of CD4+CD28 and CD8+CD28 T cells than did healthy donors. Both CD28 T cells expressed mostly CD45RO, suggesting that they are activated and/or are memory T cells. GD patient-derived CD4+CD28 and CD8+CD28 T cells produced more intracellular IFN-γ than their counterparts from healthy donors. Furthermore, CD4+CD28 and CD8+CD28 T cells from GD patients with Graves’ ophthalmopathy (GO) secreted higher level of intracellular IFN-γ than those CD28 T cells from GD patients without GO. Retrospective analysis showed that the increased levels of CD4+CD28 T cells and their IFN-γ-producing subgroups were positively correlated to the serum anti-thyrotropin receptor (TSHR) autoantibodies (TRAb). Our observations suggest that increased IFN-γ-producing CD28 T cells in GD patients may play an important role in the pathogenesis of GD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr Rev. 1998;19:673–717.

    Article  PubMed  CAS  Google Scholar 

  2. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr Rev. 2003;24:802–35.

    Article  PubMed  CAS  Google Scholar 

  3. McIver B, Morris JC. The pathogenesis of Graves’ disease. Endocrinol Metab Clin North Am. 1998;27:73–89.

    Article  PubMed  CAS  Google Scholar 

  4. Paschke R, Schuppert F, Taton M, Velu T. Intrathyroidal cytokine gene expression profiles in autoimmune thyroiditis. J Endocrinol. 1994;141:309–15.

    Article  PubMed  CAS  Google Scholar 

  5. Pichurin P, Yan XM, Farilla L, Guo J, Chazenbalk GD, Rapoport B, McLachlan SM. Naked TSH receptor DNA vaccination: a Th1 T cell response in which interferon-g production, rather than antibody, dominates the immune response in mice endocrinology. Endocrinology. 2001;142:3530–6.

    Article  PubMed  CAS  Google Scholar 

  6. Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med. 1996;335:99–107.

    Article  PubMed  CAS  Google Scholar 

  7. Dayan CM, Londei M, Corcoran AE, Grubeck-Loebenstein B, James RFL, Rapoport B, Feldmann M. Autoantigen recognition by thyroid-infiltrating T cells in Graves’ disease. Proc Natl Acad Sci U S A. 1991;88:7415–9.

    Article  PubMed  CAS  Google Scholar 

  8. Londei M, Bottazzo GF, Feldmann M. Human T-cell clones from autoimmune thyroid glands: specific recognition of autologous thyroid cells. Science. 1985;228:85–9.

    Article  PubMed  CAS  Google Scholar 

  9. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nature Rev Immunol. 2002;2:116–26.

    Article  CAS  Google Scholar 

  10. Sperling AI, Auger JA, Ehst BD, Rulifson IC, Thompson CB, Bluestone JA. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol. 1996;157:3909–17.

    PubMed  CAS  Google Scholar 

  11. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769–77.

    Article  PubMed  CAS  Google Scholar 

  12. Vallejo AN, Nestel AR, Schirmer M, Weyand CM, Goronzy JJ. Aging-related deficiency of CD28 expression in CD4+ T cells is associated with the loss of gene-specific nuclear factor binding activity. J Biol Chem. 1998;273:8119–29.

    Article  PubMed  CAS  Google Scholar 

  13. Choremi-Papadopoulou H, Viglis V, Gargalianos P, Kordossis T, Iniotaki-Theodoraki A, Kosmidis J. Downregulation of CD28 surface antigen on CD4+ and CD8+ T lymphocytes during HIV-1 infection. J Acquir Immune Defic Syndr. 1994;7:245–53.

    PubMed  CAS  Google Scholar 

  14. Schmidt D, Goronzy JJ, Weyand CM. CD4+CD7CD28 T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest. 1996;97:2027–37.

    Article  PubMed  CAS  Google Scholar 

  15. Duftner C, Goldberger C, Falkenbach A, Würzner R, Falkensammer BP, Feiffer KP, et al. Prevalence, clinical relevance and characterization of circulating cytotoxic CD4+CD28 T cells in ankylosing spondylitis. Arthritis Res Ther. 2003;5:292–300.

    Article  CAS  Google Scholar 

  16. Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28 costimulation-independent T cells in multiple sclerosis. J Clin Invest. 2001;108:1185–94.

    PubMed  CAS  Google Scholar 

  17. Lamprecht P, Moosig F, Csernok E, Seitzer U, Schnabel A, Mueller A, et al. CD28 negative T cells are enriched in granulomatous lesions of the respiratory tract in Wegener’s granulomatosis. Thorax. 2001;56:751–7.

    Article  PubMed  CAS  Google Scholar 

  18. Liuzzo G, Kopecky SL, Frye RL, Fallon WM, Maseri A, Goronzy JJ, et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999;100:2135–9.

    PubMed  CAS  Google Scholar 

  19. Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ, Weyand CM, et al. Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J Immunol. 2000;165:1138–45.

    PubMed  CAS  Google Scholar 

  20. Speiser DE, Valmori D, Rimoldi D, Pittet MJ, Lienard D, Cerundolo V, et al. CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. Eur J Immunol. 1999;29:1990–9.

    Article  PubMed  CAS  Google Scholar 

  21. Giscombe R, Nityanand S, Lewin N, Grunewald J, Lefvert AK. Expanded T cell populations in patients with Wegener’s granulomatosis: characteristics and correlates with disease activity. J Clin Immunol. 1998;18:404–13.

    Article  PubMed  CAS  Google Scholar 

  22. Komocsi A, Lamprech P, Csernok E, Mueller A, Holl-Ulrich K, Seitzer U, et al. Peripheral blood and granuloma CD4+CD28 T cells are a major source of interferon-g and tumor necrosis factor-a in Wegener’s granulomatosis. Am J Pathol. 2002;160:1717–24.

    PubMed  CAS  Google Scholar 

  23. Leeuwen MM, Remmerswaal BM, Vossen TM, Rowshani T, Wertheim-Dillen ME, Lier AW, et al. Emergence of a CD4+CD28 granzymeB+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalo virus infection. J Jmmunol. 2004;173:1834–41.

    Google Scholar 

  24. Matsuoka N, Eguchi K, Kawakami A, Tsuboi M, Nakamura H, Kimura H, et al. Lack of B7-1/BB1 and B7-2/B70 expression on thyrocytes of patients with Graves’ disease. Delivery of costimulatory signals from bystander professional antigen-presenting cells. J Clin Endocrinol Metab. 1996;81:4137–43.

    Article  PubMed  CAS  Google Scholar 

  25. Salvi M, Spaggiari E, Neri F, Macaluso C, Gardini E, Ferrozzi F, et al. The study of visual evoked potentials in patients with thyroid associated ophthalmopathy identifies asymptomatic optic nerve involvement. J Clin Endocrinol Metab. 1997;82:1027–30.

    Article  PubMed  CAS  Google Scholar 

  26. Mascher B, Schlenke P, Seyfarth M. Expression and kinetics of cytokines determined by intracellular staining using flow cytometry. J Immunol Methods. 1999;223:115–21.

    Article  PubMed  CAS  Google Scholar 

  27. Nociari MM, Telford W, Russo C. Development of CD28CD8+ T cell subset: age-associated expansion and shift from memory to naïve phenotype. J Immunol. 1999;162:3327–35.

    PubMed  CAS  Google Scholar 

  28. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol. 1999;162:6572–9.

    PubMed  CAS  Google Scholar 

  29. Park W, Weyand CM, Schmidt D, Goronzy JJ. Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4+CD28 T cells. Eur J Immunol. 1997;27:1082–90.

    Article  PubMed  CAS  Google Scholar 

  30. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ. Down-regulation of CD28 expression by TNF-a. J Immunol. 2001;167:3231–8.

    PubMed  CAS  Google Scholar 

  31. Sprent J. Immunological memory. Cur Opin Immunol. 1997;9:371–9.

    Article  CAS  Google Scholar 

  32. Dubey C, Croft M, Swain L. Naïve and effector CD4+ T cells differ in their requirements for T cells receptor versus costimulatory signals. J Immunol. 1996;157:3280–9.

    PubMed  CAS  Google Scholar 

  33. Duftner C, Seiler R, Klein-Weigel WP, Göbel H, Goldberger C, Ihling C, et al. High prevalence of circulating CD4+CD28 T-cells in patients with small abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2005;25:1347–52.

    Article  PubMed  CAS  Google Scholar 

  34. Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997;100:550–7.

    Article  PubMed  CAS  Google Scholar 

  35. Pichurin P, Pichurina O, Chazenbalk GD, Paras C, Chen CR, Rapoport B, et al. Immune deviation away from Th1 in interferon-g knock-out mice does not enhance TSH receptor antibody production following naked DNA vaccination. Endocrinology. 2002;143:1182–9.

    Article  PubMed  CAS  Google Scholar 

  36. Nagayama Y, Mizuguchi H, Hayakawa T, Niwa M, McLachlan SM, Rapoport B. Prevention of autoantibody-mediated Graves’-like hyperthyroidism in mice with IL-4, a Th2 cytokine. J Immunol. 2003;170:3522–7.

    PubMed  CAS  Google Scholar 

  37. Kumar S, Bahn RS. Relative overexpression of macrophage-derived cytokines in orbital adipose tissue from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2003;88:4246–4250.

    Article  PubMed  CAS  Google Scholar 

  38. Karasek M, Lewinski A. Etiopathogenesis of Graves’ disease. Neuro Endocrinol Lett. 2003;24:161–6.

    PubMed  CAS  Google Scholar 

  39. McLachlan SM, Nagayama Y, Rapoport B. Insight into Graves’ hyperthyroidism from animal models. Endocr Rev. 2005;26:800–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Basic Research Program of China (2001 CB51003) and the National Natural Science Foundation of China (30471690). We thank Prof. Andrej and Dr. Yi Zhang for critical reading of the manuscript. Ge-Hua Yu is thanked for excellent technical assistance. We also thank Dr. Shi and Dr. Chen for their help with the collection of peripheral blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguang Zhang.

Additional information

Zhiping Sun and Weixue Zhong contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Zhong, W., Lu, X. et al. Association of Graves’ Disease and Prevalence of Circulating IFN-γ-producing CD28 T Cells. J Clin Immunol 28, 464–472 (2008). https://doi.org/10.1007/s10875-008-9213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9213-4

Keywords

Navigation