Skip to main content
Log in

Microstructure measurements and finescale parameterization assessment of turbulent mixing in the northern South China Sea

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Both microscale and finescale measurements were conducted along 20°N and 21°N in the northern South China Sea (SCS) during July 2007. Spatial variability of turbulent kinetic energy (TKE) dissipation rate was examined, and two finescale parameterizations were assessed and compared. TKE dissipation rates along the 21°N section were found to be much higher than those along 20°N; in particular, remarkably high TKE dissipation rates existed near the Luzon Strait and around the Dongsha Plateau, which were likely caused by internal tides and internal solitary waves, respectively. The Gregg–Henyey scaling does not work well in the northern SCS, while the MacKinnon–Gregg scaling with a modified parameter matches the observations in both magnitude and variability. One explanation is that the large-scale/low-mode shear mainly comes from low-frequency internal waves such as internal tides, which are not described well by the Garrett–Munk spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

The data of temperature, salinity and velocity used in this figure were published in Yang et al. (2014)

Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alford MH, MacKinnon JA, Nash JD, Simmons H, Pickering A, Klymak JM, Pinkel R, Sun O, Rainville L, Musgrave R (2011) Energy flux and dissipation in Luzon Strait: two tales of two ridges. J Phys Oceanogr 41:2211–2222

    Article  Google Scholar 

  • Batchelor GK (1959) Small scale variation of convected quantities like temperature in a fluid. J Fluid Mech 5:113–133

    Article  Google Scholar 

  • Buijsman MC, Legg S, Klymak J (2012) Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J Phys Oceanogr 42:1337–1356

    Article  Google Scholar 

  • Carter GS, Gregg MC, Lien RC (2005) Internal waves, solitary-like waves, and mixing on the monterey bay shelf. Cont Shelf Res 25(12):1499–1520

    Article  Google Scholar 

  • Chaigneau A, Pizarro O, Rojas W (2008) Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys Res Lett 35:L13603

    Article  Google Scholar 

  • Chang MH, Lien RC, Tang TY, D’Asaro EA, Yang YJ (2006) Energy flux of nonlinear internal waves in northern South China Sea. Geophys Res Lett 33:L03607. https://doi.org/10.1029/2005GL025196

    Google Scholar 

  • Garrett CJR, Munk WH (1972) Space-time scales of internal waves. Geophys Astrophys Fluid Dyn 2:225–264

    Article  Google Scholar 

  • Garrett CJR, Munk WH (1975) Space-time scales of internal waves: a progress report. J Geophys Res 80:291–297

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere–ocean dynamics. Academic Press, San Diego, London

    Google Scholar 

  • Gregg MC (1989) Scaling turbulent dissipation in the thermocline. J Geophys Res 94:9686–9698

    Article  Google Scholar 

  • Gregg MC (1999) Uncertainties and limitations in measuring ε and χT. J Atmos Ocean Technol 16:1483–1490

    Article  Google Scholar 

  • Gregg MC, Sanford TB, Winkel DP (2003) Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422:513–515

    Article  Google Scholar 

  • Guan S, Zhao W, Huthnance J, Tian J, Wang J (2014) Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J Geophys Res Oceans 119:3134–3157. https://doi.org/10.1002/2013JC009661

    Article  Google Scholar 

  • Jan S, Chern CS, Wang J, Chao SY (2007) Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J Geophys Res 112:C06019

    Article  Google Scholar 

  • Klymak JM, Alford MH, Pinkel R, Lien RC, Yang YJ, Tang TY (2011) The breaking and scattering of the internal tide on a continental slope. J Phys Oceanogr 41:926–945

    Article  Google Scholar 

  • Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM (2006) Global abyssal mixing from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr 36:1553–1576

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Liang CR, Chen GY, Shang XD (2017) Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea. Ocean Dyn 67(5):597–609

    Article  Google Scholar 

  • Lien RC, Tang TY, Chang MH, D’Asaro EA (2005) Energy of nonlinear internal waves in the South China Sea. Geophys Res Lett 32:L05615

    Article  Google Scholar 

  • Liu Z, Lozovatsky I (2012) Upper pycnocline turbulence in the northern South China Sea. Chin Sci Bull 57:2302–2306

    Article  Google Scholar 

  • Lozovatsky I, Fernando HJS, Planella-Morato J, Liu Z, Lee JH, Jinadasa SUP (2017) Probability distribution of turbulent kinetic energy dissipation rate in ocean: observations and approximations. J Geophys Res Oceans 122(10):8293–8308

    Article  Google Scholar 

  • Lu ZM, Chen GY, Xie XH, Xu XX, Shang XD (2009) Research on microstructural characteristics of Marine mixing in the northern south China sea. Prog Nat Sci 19(6):657–663 [in Chinese]

    Google Scholar 

  • Lu YZ, Zhou SQ, Cen XR, Guo SX, Shang XD (2014) Salt finger and turbulent mixing in the upper layer of the central southern south china sea. Oceanol Limnol Sin 45(6):1158–1167 [in Chinese with English abstract]

    Google Scholar 

  • MacKinnon J, Gregg M (2003) Shear and baroclinic energy flux on the summer New England shelf. J Phys Oceanogr 33:1462–1475

    Article  Google Scholar 

  • Mackinnon J, Gregg M (2005) Spring mixing: turbulence and internal waves during restratification on the New England shelf. J Phys Oceanogr 35:2425–2443

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Developement of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Nasmyth PW (1970) Ocean turbulence. PhD thesis, University of British Columbia, Vancouver

  • Niwa Y, Hibiya T (2004) Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109:C04027

    Article  Google Scholar 

  • Oakey NS (1982) Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr 12:256–271

    Article  Google Scholar 

  • Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89

    Article  Google Scholar 

  • Osborn TR, Cox CS (1972) Oceanic fine structure. Geophys. Fluid Dyn 3:321–345

    Google Scholar 

  • Qu T, Girton JB, Whitehead JA (2006) Deepwater overflow through Luzon Strait. J Geophys Res 111:C01002. https://doi.org/10.1029/2005JC003139

    Article  Google Scholar 

  • Ruddick B (1983) A practical indicator of the stability of the water column to double-diffusive activity. Deep Sea Res 30(10):1105–1107

    Article  Google Scholar 

  • Schmitt RW, Ledwell JR, Montgomery ET, Polzin KL, Toole JM (2005) Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308(5722):685–688

    Article  Google Scholar 

  • Shang XD, Liang CR, Chen GY (2017) Spatial distribution of turbulent mixing in the upper ocean of the south china sea. Ocean Sci Discuss 13(3):1–19

    Google Scholar 

  • St. Laurent L (2008) Turbulent dissipation on the margins of the South China Sea. Geophys Res Lett 35:L23615

    Article  Google Scholar 

  • St. Laurent L, Simmons H, Tang TY, Wang YH (2011) Turbulent properties of internal waves in the South China Sea. Oceanography 24(4):78–87

    Article  Google Scholar 

  • Sun H, Wang Q (2016) Microstructure observations in the upper layer of the South China Sea. J Oceanogr 72(5):777–786. https://doi.org/10.1007/s10872-016-0371-3

    Article  Google Scholar 

  • Sun H, Yang Q, Zhao W, Liang X, Tian J (2016) Temporal variability of diapycnal mixing in the northern South China Sea. J Geophys Res Oceans 121:8840–8848. https://doi.org/10.1002/2016JC012044

    Article  Google Scholar 

  • Tian J, Yang Q, Zhao W (2009) Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr 39:3191–3203. https://doi.org/10.1175/2009JPO3899.1

    Article  Google Scholar 

  • Wang X, Peng S, Liu Z, Huang R, Qian Y, Li Y (2016) Tidal mixing in the south china sea: an internal-tide-energetics-based estimate. J Phys Oceanogr 46(1):107–124

    Article  Google Scholar 

  • Wang X, Liu Z, Peng S (2017) Impact of tidal mixing on water mass transformation and circulation in the South China Sea. J Phys Oceanogr 47(2):419–432

    Article  Google Scholar 

  • Wolk F, Yamazaki H, Seuront L, Lueck RG (2002) A new free-fall profiler for measuring biophysical microstructure. J Atmos Ocean Technol 19(5):780–793

    Article  Google Scholar 

  • Xie XH, Shang XD, van Haren H et al (2011) Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophys Res Lett 38:L05603

    Article  Google Scholar 

  • Xu J, Xie J, Chen Z, Cai S, Long X (2012) Enhanced mixing induced by internal solitary waves in the South China Sea. Cont Shelf Res 49:34–43

    Article  Google Scholar 

  • Yang Q, Tian J, Zhao W, Liang X, Zhou L (2014) Observations of turbulence on the shelf and slope of northern South China Sea. Deep Sea Res I 87:43–52

    Article  Google Scholar 

  • Yang Q, Zhao W, Liang X, Tian J (2016) Three-dimensional distribution of turbulent mixing in the south china sea. J Phys Oceanogr 46:769–788

    Article  Google Scholar 

  • Zhao Z, Klemas V, Zheng Q, Yan XH (2004) Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys Res Lett 31:L06302

    Article  Google Scholar 

  • Zhou C, Zhao W, Tian J, Yang Q, Qu T (2014) Variability of the deep water overflow in the Luzon Strait. J Phys Oceanogr 44:2972–2986

    Article  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Key Research and Development Program (Grant 2016YFC1401403), the Natural Science Foundation of China (Grant 41576009), the State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Science (Project LTO1601), and the Global Change and Air–Sea Interaction Project (Grants GASI-IPOVAI-01-03 and GASI-IPOVAI-01-02). We thank the US National Oceanic and Atmospheric Administration for providing the ETOPO1 data (http://www.ngdc.noaa.gov/mgg/global/global.html).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxuan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yang, Q. & Tian, J. Microstructure measurements and finescale parameterization assessment of turbulent mixing in the northern South China Sea. J Oceanogr 74, 485–498 (2018). https://doi.org/10.1007/s10872-018-0474-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-018-0474-0

Keywords

Navigation