Skip to main content

Advertisement

Log in

Dynamical downscaling of future sea level change in the western North Pacific using ROMS

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The future regional sea level (RSL) rise in the western North Pacific is investigated by dynamical downscaling with the Regional Ocean Modeling System (ROMS) with an eddy-permitting resolution based on three global climate models—MIROC-ESM, CSIRO-Mk3.6.0, and GFDL-CM3—under the highest greenhouse-gas emission scenario. The historical run is forced by the air-sea fluxes calculated from Coordinated Ocean Reference Experiment version 2 (COREv2) data. Three future runs—ROMS-MIROC, ROMS-CSIRO, and ROMS-GFDL—are forced with an atmospheric field constructed by adding the difference between the climate model parameters for the twenty-first and twentieth century to fields in the historical run. In all downscaling, the RSL rise along the eastern coast of Japan is generally half or less of the RSL rise maxima off the eastern coast. The projected regional (total) sea level rises along the Honshu coast during 2081–2100 relative to 1981–2000 are 19–25 (98–104), 6–15 (71–80), and 8–14 (80–86) cm in ROMS-MIROC, ROMS-CSIRO, and ROMS-GFDL, respectively. The discrepancies of the RSL rise along the Honshu coast between the climate models and downscaling are less than 10 cm. The RSL changes in the Kuroshio Extension (KE) region in all downscaling simulations are related to the changes of KE (northward shift or intensification) with climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Globally averaged sea level due to thermal expansion (thermosteric component) is estimated with a variable, zostoga, in CMIP5. However, zostoga is not available for GFDL-CM3, and thus we use another variability, zossga, (global average steric sea level change). For MIROC-ESM, both zostoga and zossga are available and the difference between them are small (less than 0.3 % for 100 year difference).

References

  • Abdul-Aziz OI, Mantua NJ, Myers KW (2011) Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas. Can J Fish Aquat Sci 68(9):1660–1680. doi:10.113/F2011-079

    Article  Google Scholar 

  • Ådlandsvik B (2008) Marine downscaling of a future climate scenario for the North Sea. Tellus 60A:451–458. doi:10.1111/j.1600-0870.2008.00311.x

    Article  Google Scholar 

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) Salinity, NOAA Atlas NESDIS 68, vol 2. Government Printing Office, Washington, p 184

    Google Scholar 

  • Bindoff NL et al (2007) Observations: Oceanic climate change and sea level. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136(8):2999–3017

    Article  Google Scholar 

  • Cazenave A, Cozannet GL (2013) Sea level rise and its coastal impacts. Earths Future 2:15–34. doi:10.1002/2013EF000188

    Article  Google Scholar 

  • Chamberlain MA, Sun CJ, Matear RJ, Feng M, Phipps SJ (2012) Downscaling the climate change for oceans around Australia. Geosci Model Dev 5:1177–1194

    Article  Google Scholar 

  • Chelton DB, Xie SP (2010) Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 23(4):52–69

    Article  Google Scholar 

  • Church JA et al (2013) Sea Level Change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Curchitser EN, Haidvogel DB, Hermann AJ, Dobbins EL, Powell TM, Kaplan A (2005) Multi-scale modeling of the North Pacific Ocean: assessment and analysis of simulated basin-scale variability (1996–2003). J Geophys Res. doi:10.1029/2005JC002902

    Google Scholar 

  • Ducet N, Le Traon PY, Reverdin G (2000) Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1/2. J Geophys Res 105(19):477–498

    Google Scholar 

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591

    Article  Google Scholar 

  • Fukamachi Y, Ohshima KI, Ebuchi N, Bando T, Ono K, Sano M (2010) Volume transport in the Soya strait during 2006-2008. J Oceanogr 66:685–696

    Article  Google Scholar 

  • Fukudome K, Yoon JH, Ostrovskii A, Takikawa T, Han IS (2010) Seasonal volume transport variation in the Tsushima warm current through the Tsushima Straits from 10 years of ADCP observations. J Oceanogr 66:539–551

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, Harcourt Place, London, p 215

    Google Scholar 

  • Griffies SM et al (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79

    Article  Google Scholar 

  • Griffies SM, Winton M, Donner LJ et al (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim 24:3520–3544. doi:10.1175/2011JCLI3964.1

    Article  Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281

    Article  Google Scholar 

  • Han W, Moore AM, Levin J, Zhang B, Arango HG, Curchitser E, Lorenzo ED, Gordon AL, Lin J (2009) Seasonal surface ocean circulation and dynamics in the Philippine Archipelago region during 2004–2008. Dyn Atmos Oceans 47:114–137

    Article  Google Scholar 

  • Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J (2011) A global ranking of port cities with high exposure to climate extremes. Clim Change 104:89–111. doi:10.1007/s10584-010-9977-4

    Article  Google Scholar 

  • Ito T, Togawa O, Ohnishi M, Isoda Y, Nakayama T, Shima S, Kuroda H, Iwahashi M, Sato C (2003) Variation of velocity and volume transport of the Tsugaru warm current in the winter of 1999–2000. Geophys Res Lett 30(13):1678. doi:10.1029/2003GL017522

    Article  Google Scholar 

  • Jeffrey SJ, Rotstayn L, Collier M, Dravitzk S, Hamalaien C, Moeseneder C, Wong K, Syktus J (2013) Australia’s CMIP5 submission using the CSIRO Mk3.6 model. Aust Meteorol Oceanogr J 63:1–13

    Google Scholar 

  • Kagimoto T, Yamagata T (1997) Seasonal transport variations of the Kuroshio: an OGCM simulation. J Phys Oceanogr 27:403–418

    Article  Google Scholar 

  • Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC = A1B scenario. J Phys Oceanogr 37:296–312

    Article  Google Scholar 

  • Large WG, Yeager S (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. doi:10.1007/s00382-008-0441-3

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–404

    Article  Google Scholar 

  • Lee T, Waliser DE, Li JF, Landerer FW, Gierach MM (2013) Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J Clim 26:5810–5826. doi:10.1175/JCLI-D-12-00591.1

    Article  Google Scholar 

  • Liu Z, Wu L (1999) Rossby wave-coastal kelvin wave interaction in the extratropics. Part II: formatioin of island circulation. J Phys Oceanogr 29:2405–2418

    Article  Google Scholar 

  • Liu Y, Xie L, Morrison JM, Kamykowski D (2013) Dynamic downscaling of the impact of climate change on the ocean circulation in the Galápagos Archipelago. Adv Meteorol 2013:1–18

    Google Scholar 

  • Liu Y, Lee SK, Enfield DB, Muhling BA, Lamkin JT, Muller-Karger FE, Roffer MA (2015) Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections. J Mar Sys 148(2015):56–69

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) Temperature, NOAA Atlas NESDIS 68, vol 1. Government Printing Office, Washington, p 184

    Google Scholar 

  • Lorenzo ED, Schneider N, Cobb KM, Franks PJS, Chhak K et al (2008) North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35(L08607):1–6. doi:10.1029/2007GL032838

    Google Scholar 

  • Lowe JA, Gregory M (2006) Understanding projections of sea level rise in a Hadley Centre coupled climate model. J Geophys Res. doi:10.1029/2005JC003421

    Google Scholar 

  • Lyu SJ, Kim K (2005) Subinertial to interannual transport variations in the Korea Strait and their possible mechanisms. J Geophys Res 110(C1206). doi: 10.1029/2004JC002651

  • Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic model. Ocean Model 3:1–20

    Article  Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27(1):39–68. doi:10.1007/s00382-006-0124-x

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Nicholls RJ, Hanson S, Herweijer C, Patmore N, Hallegatte S et al (2008) Ranking port cities with high exposure and vulnerability to climate extremes: exposure estimates. OECD Publ. doi:10.1787/011766488208

    Google Scholar 

  • Ohshima KI (1994) The flow system in the Japan Sea caused by a sea level difference through shallow straits. J Geophys Res 99:9925–9940

    Article  Google Scholar 

  • Oliver ECJ, Holbrook NJ (2014) Extending our understanding of South Pacific gyre “spin-up”: modeling the East Australian current in a future climate. J Geophys Res Ocean 119:2788–2805. doi:10.1002/2013JC009591

    Article  Google Scholar 

  • Peltier WR, Luthcke SB (2009) On the origins of Earth rotation anomalies: new insights on the basis of both “paleogeodetic” data and gravity recovery and climate experiment (GRACE) data. J Geophys Res. doi:10.1029/2009JB006352

    Google Scholar 

  • Rio MH, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res. doi:10.1029/2003JC002226

    Google Scholar 

  • Rotstayn LD et al (2010) Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int J Climatol 30:1067–1088. doi:10.1002/joc.1952

    Google Scholar 

  • Sakamoto TT, Hasumi H, Ishii M, Emori S, Suzuki T, Nishimura T, Sumi A (2005) Responses of the Kuroshio and the Kuroshio extension to global warming in a high-resolution climate model. Geophys Res Lett. doi:10.1029/2005GL023384

    Google Scholar 

  • Sasaki YN, Minobe S, Miura Y (2014) Decadal sea-level variability along the coast of Japan in response to ocean circulation changes. J Geophys Res Oceans 119:266–275. doi:10.1002/2013JC009327

    Article  Google Scholar 

  • Sato Y, Yukimoto S, Tsujino H, Ishizaki H, Noda A (2006) Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an Arctic Oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J Meteorol Soc Jpn 84:295–309

    Article  Google Scholar 

  • Seo H, Miller AJ, Roads JO (2007) The scripps coupled ocean-atmosphere regional (SCOAR) model, with applications in the eastern Pacific sector. J Clim 20:381–402

    Article  Google Scholar 

  • Seo GH, Cho YK, Choi BJ, Kim KY, Kim BG, Tak YJ (2014) Climate change projection in the Northwest Pacific marginal seas through dynamic downscaling. J Geophys Res Oceans 119:3497–3516. doi:10.1002/2013JC009646

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Model 9:347–404

    Article  Google Scholar 

  • Shu Q, Qian FL, Song ZY, Yin XQ (2013) Acomparison of two global ocean-ice coupled models with different horizontal resolutions. Acta Oceanol Sin 32(8):1–11

    Article  Google Scholar 

  • Slangen ABA, Carson M, Katsman CA et al (2014) Projecting twenty-first century regional sea-level changes. Clim Change 124:317–332

    Article  Google Scholar 

  • Small RJ, deSzoeke SP, Xie SP, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air-sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319. doi:10.1016/j.dynatmoce.2008.01.001

    Article  Google Scholar 

  • Sueyoshi M, Yasuda T (2012) Inter-model variability of projected sea level changes in the western North Pacific in CMIP3 coupled climate models. J Oceanogr 68:533–543. doi:10.1007/s10872-012-0117-9

    Article  Google Scholar 

  • Sumata H, Hashioka T, Suzuki T, Yoshie N, Okunishi T, Aita MN, Sakamoto TT, Ishida A, Okada N, Yamanaka Y (2010) Effect of eddy transport on the nutrient supply into the euphotic zone simulated in an eddy-permitting ocean ecosystem model. J Mar Sys 83(2010):67–87. doi:10.1016/j.jmarsys.2010.07.002

    Article  Google Scholar 

  • Sun CJ, Feng M, Matear RJ, Chamberlain MA, Craig P, Ridgway KR, Schiller A (2012) Marine downscaling of a future climate scenario for Australian boundary currents. J Clim 25(8):2947–2962. doi:10.1175/JCLI-D-11-00159.1

    Article  Google Scholar 

  • Suzuki T, Ishii M (2011a) Regional distribution of sea level changes resulting from enhanced greenhouse warming in the Model for Interdisciplinary Research on Climate version 3.2. Geophys Res Lett. doi:10.1029/2010GL045693

    Google Scholar 

  • Suzuki T, Ishii M (2011b) Long-term regional sea level changes due to variations in water mass density during the period 1981–2007. Geophys Res Lett. doi:10.1029/2011GL049326

    Google Scholar 

  • Tokeshi T, Yanagi T (2003) High sea level caused at Naha in Okinawa Island. Oceanogr Jpn 12(4):395–405 (in Japanese with English abstract)

    Article  Google Scholar 

  • Tsujino H, Nakano H, Motoi T (2008) Mechanism of currents through the straits of the Japan Sea: mean state and seasonal variation. J Oceanogr 64:141–161

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872. doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Yin J (2012) Century to multi-century sea level rise projections from CMIP5 models. Geophys Res Lett. doi:10.1029/2012GL052947

    Google Scholar 

  • Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea level rise in twenty-first century projections. J Clim 23:4585–4607. doi:10.1175/2010JCLI3533.1

    Article  Google Scholar 

  • Zhang XB, Church JA, Platten SM, Monselesan D (2014) Projection of subtropical gyre circulation and associated sea level changes in the Pacific based on CMIP3 climate models. Clim Dyn 43:131–144. doi:10.1007/s00382-013-1902-x

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful for fruitful discussion with Dr. Tamaki Yasuda and Dr. Tatsuo Suzuki. This work was supported by JSPS KAKENHI Grant Numbers 26287110, 26610146, 15H01606. The numerical calculations were carried out on a computer at the Institute of Low Temperature Science, Hokkaido University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZJ., Minobe, S., Sasaki, Y.N. et al. Dynamical downscaling of future sea level change in the western North Pacific using ROMS. J Oceanogr 72, 905–922 (2016). https://doi.org/10.1007/s10872-016-0390-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-016-0390-0

Keywords

Navigation