Skip to main content

Advertisement

Log in

Community structure of ammonia-oxidizing marine archaea differs by depth of collection and temperature of cultivation

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We analyzed the community structure of marine ammonia-oxidizing archaea (AOA) by sequencing the ammonia monooxygenase subunit A (amoA) gene. Cells were grown in ammonium-enriched seawater at various temperatures. Most amoA clones retrieved prior to cultivation belonged to Water Column Cluster B (WCB); however, most clones retrieved after incubation at high temperature belonged to Water Column Cluster A (WCA) or the Nitrosopumilus maritimus-like (NM) group. Some operational taxonomic units in the NM and WCA groups may be better adapted to higher temperature than those in WCB. Hence, differing temperature adaptations among AOA groups may be related to community structures and depth distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agogué H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788–792

    Article  Google Scholar 

  • Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanog 20:41–82

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Ando Y, Nakagawa T, Takahashi R, Yoshihara K, Tokuyama T (2009) Seasonal changes in abundance of ammonia-oxidizing Archaea and ammonia-oxidizing bacteria and their nitrification in sand of an eelgrass zone. Microbes Environ 24:21–27

    Article  Google Scholar 

  • Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  Google Scholar 

  • de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    Article  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  Google Scholar 

  • Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–18301

    Article  Google Scholar 

  • Huang Y, Niu BF, Gao Y, Fu LM, Li WZ (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  Google Scholar 

  • Jodo M, Kawamoto K, Tochimoto M, Coverly SC (1992) Determination of nutrients in seawater by segmented-flow analysis with higher analysis rate and reduced interference on ammonia. J Automat Chem 14:163–167

    Article  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109

    Article  Google Scholar 

  • Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Dimitri G, Amann R, Jetten MSM, Kuypers MMM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106:4752–4757

    Article  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–981

    Article  Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT, Preston C, Kar DM, DeLong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162–1175

    Article  Google Scholar 

  • Molina V, Belmar L, Ulloa O (2010) High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific. Environ Microbiol 12:2450–2465

    Article  Google Scholar 

  • Nakagawa T, Mori K, Kato C, Takahashi R, Tokuyama T (2007) Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the northeastern Japan Sea. Microbes Environ 22:365–372

    Article  Google Scholar 

  • Prézelin BB, Alldredge AL (1983) Primary production of marine snow during and after an upwelling event. Limnol Oceanogr 28:1156–1167

    Article  Google Scholar 

  • Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    Google Scholar 

  • Santoro AE, Casciotti KL, Francis CA (2010) Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol 12:1989–2006

    Article  Google Scholar 

  • Shanks AL, Trent JD (1979) Marine snow—microscale nutrient patches. Limnol Oceanogr 24:850–854

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the captain and crew of the research vessel Tansei-maru and the research members of cruise KT08-02. In particular, we thank Mr. Hajime Itoh, Dr. Ryo Kaneko, and Dr. Susumu Yoshizawa for helping with the sampling, phylogenetic analyses, and writing this paper, respectively (Atmosphere and Ocean Research Institute, The University of Tokyo). We thank the staff and members of Marine Microbiology (Atmosphere and Ocean Research Institute, The University of Tokyo), and Hidetoshi Urakawa for providing advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Ijichi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ijichi, M., Hamasaki, K. Community structure of ammonia-oxidizing marine archaea differs by depth of collection and temperature of cultivation. J Oceanogr 67, 739–745 (2011). https://doi.org/10.1007/s10872-011-0066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-011-0066-8

Keywords

Navigation