Skip to main content
Log in

Impact of Alaskan Stream eddies on chlorophyll distribution in the North Pacific

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstact

The impact of the Alaskan Stream (AS) eddies on the chlorophyll a (chl-a) distribution in the central subarctic North Pacific was investigated through analysis of chl-a and altimetry data from satellite observations. Altimetry observations provided the locations of mesoscale eddies in time and space within the maps of chlorophyll distributions. The climatological chl-a distributions averaged in the area and time showing presence of AS eddies suggested that AS eddies contributed significantly to the chl-a distribution in the deep-sea region of the subarctic North Pacific. The chl-a distribution was closely related to the AS eddies regardless of whether the eddy was located in or detached from the AS. A combination of two or three AS eddies sometimes formed high chl-a concentration belts that injected chlorophyll and coastal nutrient-rich waters southward from the Aleutian Islands far into the deep-sea region of the subarctic North Pacific. These results indicate that chl-a distribution in the central subarctic North Pacific was strongly impacted by AS eddies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banse, K. and D. C. English (1999): Comparing phytoplankton seasonality in the eastern and western subarctic Pacific and the western Bering Sea. Prog. Oceanogr., 43, 235–288.

    Article  Google Scholar 

  • Behrenfeld, M. and P. Falkowski (1997): Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20.

    Article  Google Scholar 

  • Boyd, P. W., C. S. Wong, J. Merrill, F. Whitney, J. Snow, P. J. Harrison and J. Gower (1998): Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: is there a connection? Global Biogeochem. Cycles, 12, 429–441.

    Article  Google Scholar 

  • Boyd, P. W. et al. (2004): The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature, 428, 549–553.

    Article  Google Scholar 

  • Chelton, D. B., M. G. Schlax, R. M. Samelson and R. A. de Szoeke (2007): Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    Article  Google Scholar 

  • Crawford, W. R. (2002): Physical characteristics of Haida Eddies. J. Oceanogr., 58, 703–713.

    Article  Google Scholar 

  • Crawford, W. R. and F. Whitney (1999): Mesoscale eddies aswirl with data in Gulf of Alaska Ocean. Eos, Trans. AGU, 80, 365–370.

    Google Scholar 

  • Crawford, W. R., J. Y. Cherniawsky and M. G. G. Foreman (2000): Multi-year meanders and eddies in the Alaskan Stream as observed by TOPEX/Poseidon altimeter. Geophys. Res. Lett., 27, 1025–1028.

    Article  Google Scholar 

  • Crawford, W. R., P. J. Brickley, T. D. Peterson and A. C. Thomas (2005): Impact of Haida eddies on chlorophyll distribution in the eastern Gulf of Alaska. Deep-Sea Res. Part II, 52, 975–989.

    Article  Google Scholar 

  • Crawford, W. R., P. J. Brickley and A. C. Thomas (2007): Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska. Prog. Oceanogr., 75, 287–303.

    Article  Google Scholar 

  • Goes, J. I., K. Sasaoka, H. R. Gomes, S. Saitoh and T. Saino (2004): A comparison of the seasonality and interannual variability of phytoplankton biomass and production in the western and eastern gyres of the subarctic Pacific using multi-sensor satellite data. J. Oceanogr., 60, 75–91.

    Article  Google Scholar 

  • Gower, J. F. R. (1989): Geosat altimeter observations of the distribution and movement of sea-surface height anomalies in the north-east Pacific. p. 977–981. In Oceans 89: The Global Ocean, Institute of Electrical and Electronics Engineers, Seattle, Washington, D.C.

    Google Scholar 

  • Harrison, P. J., P. W. Boyd, D. E. Varela, S. Takeda, A. Shiomoto and T. Odate (1999): Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Prog. Oceanogr., 43, 205–234.

    Article  Google Scholar 

  • Henson, S. A. and A. C. Thomas (2008): A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep-Sea Res. Part I, 55, 163–176.

    Article  Google Scholar 

  • Isern-Fontanet, J., E. Garcia-Ladona and J. Font (2003): Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol., 20(5), 772–778.

    Article  Google Scholar 

  • Isern-Fontanet, J., J. Font, E. Garcia-Ladona, M. Emelianov, C. Millot and I. Taupier-Letage (2004): Spatial structure of anticyclonic eddies in the Algerian Basin (Mediterranean Sea): analyzed using the Okubo-Weiss parameter. Deep-Sea Res. Part II, 51, 3009–3028.

    Article  Google Scholar 

  • Isern-Fontanet, J., E. Garcia-Ladona and J. Font (2006): Vortices of the Mediterranean Sea: an altimetric perspective. J. Phys. Oceanogr., 36 (1), 87–103.

    Article  Google Scholar 

  • Johnson, W. K., L. A. Miller, N. E. Sutherland and C. S. Wong (2005): Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep-Sea Res. Part II, 52, 933–953.

    Article  Google Scholar 

  • Kalnay, E. et al. (1996): The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470.

    Article  Google Scholar 

  • Ladd, C., G. L. Hunt, Jr., C. W. Mordy, S. A. Salo and P. J. Stabeno (2005a): Marine environment of the eastern and central Aleutian Islands. Fish. Oceanogr., 14 (S1), 22–38.

    Article  Google Scholar 

  • Ladd, C., N. B. Kachel, C. W. Mordy and P. J. Stabeno (2005b): Observations from a Yakutat eddy in the northern Gulf of Alaska. J. Geophys. Res., 110, C03003, doi:10.1029/2004JC002710.

    Article  Google Scholar 

  • Ladd, C., P. J. Stabeno and E. D. Cokelet (2005c): A note on cross-shelf exchange in the northern Gulf of Alaska. Deep-Sea Res. Part II, 52, 667–679.

    Article  Google Scholar 

  • Ladd, C., C. W. Mordy, N. B. Kachel and P. J. Stabeno (2007): Northern Gulf of Alaska eddies and associated anomalies. Deep-Sea Res. Part I, 54, 487–509.

    Article  Google Scholar 

  • Mackas, D. L. and M. Galbraith (2002): Zooplankton community composition along the inner portion of Line P during the 1997–1998 El Nino event. Prog. Oceanogr., 54, 423–437.

    Article  Google Scholar 

  • Martin, A. P. and K. J. Richards (2001): Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. Part II, 48, 757–773.

    Article  Google Scholar 

  • Martin, J. H., R. M. Gordon, S. Fitzwater and W. W. Brokenow (1989): Vertex: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res., 30, 649–680.

    Article  Google Scholar 

  • McGillicuddy, D. J., L. A. Anderson, N. R. Bates, T. Bibby, K. O. Buesseler, C. A. Carlson, C. S. Davis, C. Ewart, P. G. Falkowski, S. A. Goldthwait, D. A. Hansell, W. J. Jenkins, R. Johnson, V. K. Kosnyrev, J. R. Ledwell, Q. P. Li, D. A. Siegel and D. K. Steinberg (2007): Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 1021–1026, doi:10.1126/science.1136256.

    Article  Google Scholar 

  • Mordy, C. W., P. J. Stabeno, C. Ladd, S. I. Zeeman, D. P. Wisegarver and G. L. Hunt, Jr. (2005): Nutrients and primary production along the eastern Aleutian Island archipelago. Fish. Oceanogr., 14 (S1), 55–76.

    Article  Google Scholar 

  • Okkonen, S. R. (1996): The influence of an Alaskan Stream eddy on flow through Amchitka Pass. J. Geophys. Res., 101, 8839–8851.

    Article  Google Scholar 

  • Okkonen, S. R., T. J. Weingartner, S. L. Danielson, D. L. Musgrave and G. M. Schmidt (2003): Satellite and hydrographic observations of eddy-induced shelf-slope exchange in the northwestern Gulf of Alaska. J. Geophys. Res., 108(C2), 3033, doi:10.1029/2002JC001342.

    Article  Google Scholar 

  • Okubo, A. (1970): Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences. Deep-Sea Res., 17, 445–454.

    Google Scholar 

  • O’Reilly, J. E., S. Maritorena, D. Siegel, M. O’Brien, D. Toole, M. B. Greg, M. Kahru, F. Chavez, P. Strutton, G. Cota, S. Hooker, C. McClain, K. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. Moore, J. Aiken, K. Arrigo, R. Letelier and M. Culver (2000): Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. p. 9–23. In SeaWiFS Post Launch Calibration and Validation Analyses, Part 3, ed. by S. B. Hooker and E. R. Firestone, NASA Tech. Memo. 2000-206892, Vol. 11, NASA Goddard Space Flight Center, Greenbelt, Maryland.

    Google Scholar 

  • Pasquero, C., A. Provenzale and A. Babiano (2001): Parameterization of dispersion in two-dimensional turbulence. J. Fluid Mech., 439, 279–303.

    Article  Google Scholar 

  • Reed, R. K. and J. D. Schumacher (1986): Physical oceanography. p. 57–75. In The Gulf of Alaska: Physical Environment and Biological Resourses, ed. by D. W. Hood and S. T. Zimmerman, NOAA, U.S. Dept. of Commerce.

  • Rogachev, K., N. Shlyk and E. Carmack (2007): The shedding of mesoscale anticyclonic eddies from the Alaskan Stream and westward transport of warm water. Deep-Sea Res. Part II, 54, 2643–2656.

    Article  Google Scholar 

  • SSALTO/DUACS (2007): User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products, Version: 1rev8 of the 11 July 2007, CLS 8–10 Rue Hermès — Parc Technologique du Canal — 31526 Ramonville St-Agne, France, 42 pp.

  • Tabata, S. (1982): The anticyclonic, baroclinic eddy off Sitka, Alaska, in the northeast Pacific Ocean. J. Phys. Oceanogr., 12, 1260–1282.

    Article  Google Scholar 

  • Thomson, R. E. (1972): On the Alaskan Stream. J. Phys. Oceanogr., 2, 363–371.

    Article  Google Scholar 

  • Ueno, H., H. Freeland, W. R. Crawford, H. Onishi, E. Oka, K. Sato and T. Suga (2009): Anticyclonic eddies in the Alaskan Stream. J. Phys. Oceanogr., 39, 934–951.

    Article  Google Scholar 

  • Weiss, J. (1991): The dynamics of enstrophy transfer in two dimensional hydrodynamics. Physica D, 48, 273–294.

    Article  Google Scholar 

  • Whitney, F. A. and M. Robert (2002): Structure of Haida eddies and their transport of nutrient from coastal margins into the NE Pacific Ocean. J. Oceanogr., 58, 715–723.

    Article  Google Scholar 

  • Whitney, F. A., W. R. Crawford and P. J. Harrison (2006): Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE Pacific. Deep-Sea Res. Part II, 52, 681–706.

    Article  Google Scholar 

  • Wong, C. S., N. A. D. Waser, Y. Nojiri, F. A. Whitney, J. S. Page and J. Zeng (2002): Seasonal cycles of nutrients and dissolved inorganic carbon at high and mid latitudes in the North Pacific Ocean during the Skaugran cruises: determination of new production and nutrient uptake ratios. Deep-Sea Res. Part II, 49, 5317–5338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, H., Crawford, W.R. & Onishi, H. Impact of Alaskan Stream eddies on chlorophyll distribution in the North Pacific. J Oceanogr 66, 319–328 (2010). https://doi.org/10.1007/s10872-010-0028-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0028-6

Keywords

Navigation