Skip to main content
Log in

Retrieval of surface wave parameters from sar images and their validation in the coastal seas around Japan

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We have developed a scheme to retrieve surface wave parameters (wave height and wave propagation direction) from European Remote-Sensing Satellite (ERS) Synthetic Aperture Radar (SAR) image mode data in coastal seas around Japanese coastlines. SAR spectra are converted to surface wave spectra of swell-dominated or wind-wave dominated cases. The SAR spectrum and SAR-derived wind speed are used to derive the surface wave spectrum. The wind-wave dominated case and swell-dominated case are differentiated by a wind speed of 6 m/s, and processed in different ways because of their different degree of nonlinearity. It is indicated that the cutoff wavelength for retrieval of the wind-wave dominated spectrum is proportional to the root of significant wave height, which is consistent with the results of previous studies. We generated 66 match-ups using the SAR sub-images and the in-situ surface wave parameters, which were measured by wave gauges installed in near-shore seas. Among them, there are 57 swell-dominated cases, and 9 wind-wave dominated cases. The significant wave heights derived from SAR and from in-situ observation agree with the bias of 0.09 m, the standard deviation of 0.61 m and the correlation coefficient of 0.78. The averaged absolute deviation of wave propagation directions is 18.4°, and the trend of the agreement does not depend on the wave height. These results demonstrate that the SAR surface wave spectrum retrieved by the present system can be used to observe the surface wave field in the coastal seas around Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers, W. (1983): Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra. J. Geophys. Res., 88(C3), 1745–1759.

    Article  Google Scholar 

  • Alpers, W. R. and K. Hasselmann (1982): Spectral signal-to-clutter and thermal noise propertied of ocean wave imaging synthetic aperture radars. Int. J. Remote Sens., 3, 423–446.

    Article  Google Scholar 

  • Alpers, W. R., D. B. Ross and C. L. Rufenach (1981): On the detectability of ocean surface wave by Real and Synthetic Aperture Radar. J. Geophys. Res., 86(C7), 6481–6498.

    Article  Google Scholar 

  • Alpers, W., U. Paul and G. Gross (1998): Katabatic wind fields in coastal areas studied by ERS-1 synthetic aperture radar imagery and numerical modeling. J. Geophys. Res., 103, 7875–7886.

    Article  Google Scholar 

  • Bruning, C., R. Schmidt and W. Alpers (1994): Estimation of the ocean wave-radar modulation transfer function from synthetic aperture radar imagery. J. Geophys. Res., 99(C5), 9803–9816.

    Article  Google Scholar 

  • Collard, F., F. Ardhuin and B. Chapron (2005): Extraction of coastal ocean wave fields from SAR images. IEEE Journal of Oceanic Engineering, 30(3), 526–533.

    Article  Google Scholar 

  • Donelan, M. A., J. Hamilton and W. H. Hui (1985): Directional spectra of wind generated waves. Philos. Trans. R. Soc., 315, 509–562.

    Article  Google Scholar 

  • Elgar, S., T. H. C. Herbers and R. T. Guza (1994): Reflection of ocean surface gravity waves from a natural beach. J. Phys. Oceanogr., 24(7), 1503–1511.

    Article  Google Scholar 

  • Engen, G. and H. Johnsen (1995): SAR-ocean wave inversion using image cross spectra. IEEE Trans. Geosci. Remote Sensing, 33, 1047–1056.

    Article  Google Scholar 

  • Feindt, F., J. Schroter and W. Alpers (1986): Measurement of the ocean wave-radar modulation transfer function at 35 GHz from a sea based platform in the North Sea. J. Geophys. Res., 91(C8), 9701–9708.

    Article  Google Scholar 

  • Furevik, B. R., O. M. Johannessen and A. D. Sandvik (2002): SAR retrieved winds in polar regions— Comparison with in situ data and atmospheric model output. IEEE Trans. Geosci. Remote Sensing, 40, 1720–1732.

    Article  Google Scholar 

  • Hasselmann, D. E., M. Dunckel and J. A. Ewing (1980): Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr., 10, 1264–1280.

    Article  Google Scholar 

  • Hasselmann, K. and S. Hasselmann (1991): On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res., 96(C6), 10713–10729.

    Article  Google Scholar 

  • Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D. J. Olbers, K. Richter, W. Sell and H. Walden (1973): Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Erganzungsheft Deut Hydrogr Zeit, 12, 1–95.

    Google Scholar 

  • Hasselmann, K., R. K. Raney, W. J. Plant, W. Alpers, R. A. Shuchman, D. R. Lyzenga, C. L. Rufenach and M. J. Tucker (1985): Theory of synthetic aperture radar ocean imaging: a MARSEN view. J. Geophys. Res., 90(C3), 4659–4686.

    Article  Google Scholar 

  • Hasselmann, S., C. Bruning, K. Hasselmann and P. Heimbach (1996): An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. J. Geophys. Res., 101(C7), 16615–16629.

    Article  Google Scholar 

  • Johnsen, H., G. Engen, K. Hogda, B. Chapron and Y. Desnos (1999): Validation of ENVISAT wave mode level 1b and level 2 product using ERS SAR data. Proceedings of the CEOS SAR Workshop, Toulouse, 26–29 October 1999, ESA SP-450, 59–64.

  • Kerbaol, V., B. Chapron and P. M. Vachon (1998): A global analysis of ERS-1/2 SAR wave mode imagettes. J. Geophys. Res., 103, 7833–7846.

    Article  Google Scholar 

  • Krogstad, H. E., O. Samset and P. M. Vachon (1994): Generalizations of the non-linear ocean-SAR transform and a simplified SAR inversion algorithm. Atmosphere-Ocean, 32(1), 62–82.

    Article  Google Scholar 

  • Lyzenga, D. R. (1986): Numerical simulation of synthetic aperture radar image spectra for ocean waves. IEEE Trans. Geosci. Remote Sensing, GE-24(6), 863–872.

    Article  Google Scholar 

  • Mastenbroek, C. and C. F. de Valk (2000): A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. J. Geophys. Res., 105, 3497–3516.

    Article  Google Scholar 

  • Monaldo, F. M. and R. C. Beal (1998): Comparison of SIR-C SAR wavenumber spectra with WAM model predictions. J. Geophys. Res., 103(C9), 18815–18825.

    Article  Google Scholar 

  • Nagai, T. and K. Nukada (2004): Recent improvement of real-time coastal wave-tide information system in Japan. Workshop on Wave, Tide Observation and Modelings in the Asia-Pacific Region, 1–12.

  • Pan, F. and R. B. Smith (1999): Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56, 905–923.

    Article  Google Scholar 

  • Schulz-Stellenfleth, J. and S. Lehner (2002): Spaceborne synthetic aperture radar observation of ocean waves traveling into sea ice. J. Geophys. Res., 107(C8), 3106, 10.1029/ 2001JC00837.

    Article  Google Scholar 

  • Schulz-Stellenfleth, J., S. Lehner and D. Hoja (2005): A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. J. Geophys. Res., 110, C05004, doi:10.1029/2004JC002822.

    Article  Google Scholar 

  • Shimada, M. (1999): Verification processor for SAR calibration and interferometry. Adv. Space Res., 23(8), 1477–1486.

    Article  Google Scholar 

  • Shimada, T. and H. Kawamura (2005): Statistical compartmentalization of surface wind field over coastal seas using high-resolution SAR-derived winds. Geophys. Res. Lett., 32, L05607, doi:10.1029/2004GL022231.

    Google Scholar 

  • Shimada, T., H. Kawamura and M. Shimada (2003): An L-band geophysical model function for SAR wind retrieval using JERS-1 SAR. IEEE Trans. Geosci. Remote Sensing, 41(3), 518–531.

    Article  Google Scholar 

  • Shimada, T., H. Kawamura, M. Shimada, I. Watabe and S. Iwasaki (2004): Evaluation of JERS-1 SAR Images from a coastal wind retrieval point of view. IEEE Trans. Geosci. Remote Sensing, 42(3), 491–500.

    Article  Google Scholar 

  • Vachon, P. W., H. E. Krogstad and J. S. Paterson (1994): Airborne and spaceborne Synthetic Aperture Radar observation of ocean waves. Atmosphere-Ocean, 32(1), 83–112.

    Article  Google Scholar 

  • Voorrips, A. C., C. Mastenbroek and B. Hansen (2001): Validation of two algorithms to retrieve ocean wave spectra from ERS synthetic aperture radar. J. Geophys. Res., 106(C8), 16825–16840.

    Article  Google Scholar 

  • Wright, J. W. (1978): Detection of ocean waves by microwave radar: The modulation of short gravity-capillary waves. Boundary-Layer Meteorology, 13, 87–105.

    Article  Google Scholar 

  • Yamaguchi, S. and H. Kawamura (2005): Influence of orographically steered winds on Mutsu Bay surface currents. J. Geophys. Res., 110(9), Art. No. C09010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Kawamura, H. Retrieval of surface wave parameters from sar images and their validation in the coastal seas around Japan. J Oceanogr 65, 567–577 (2009). https://doi.org/10.1007/s10872-009-0048-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0048-2

Keywords

Navigation