Skip to main content

Advertisement

Log in

In-situ diurnal sea surface temperature variations and near-surface thermal structure in the tropical hot event of the Indo-Pacific warm pool

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Diurnal Sea Surface Temperature (SST) variations and the near-surface thermal structure of the tropical hot event (HE) have been investigated using advanced in-situ equatorial observations with hourly temporal resolution. The information on the HE area defined by the satellite cloud-free SSTs is used to sample the in-situ observations. The in-situ SSTs sampled for the HE conditions show that a maximum (minimum) SST has a histogram mode at 30.8°C (29.0°C), and frequently appears at 15:00 (07:00) local time. The amplitude of the diurnal SST variation (DSST) is defined by the difference between the maximum and minimum SSTs. The mean DSST during HEs is greater than 0.5°C, and has a maximum of about 0.75°C at the HE peak. The time series of mean DSST gradually increases (rapidly decreases) before (after) the peak. The satellite SST has a systematic positive bias against the corresponding daytime SST measured by the Triangle Trans-Ocean buoy Network. This bias is enhanced under conditions of large in-situ DSST. One-dimensional numerical model simulation suggests that the systematic bias is caused by the sharp vertical temperature gradient in the surface layer of HE. The near-surface thermal structure is generated by conditions of high insolation and low wind speed, which is the typical HE condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Donlon, C. J. and the GHRSST-PP Science Team (2005): The GHRSST-PP Data Processing Specification Version 1.5, available form the GHRSST-PP International Project Office, Met Office, Exeter, U.K., or at http://www.ghrsst-pp.org, 241 pp.

    Google Scholar 

  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson and G. S. Young (1996): Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 3747–3764.

    Article  Google Scholar 

  • Hepplewhite, C. L. (1989): Remote observation of the sea surface and atmosphere. The oceanic skin effect. Int. J. Remote Sensing, 10, 801–810.

    Article  Google Scholar 

  • Kawai, Y. and H. Kawamura (2000): Study on a platform effect in the in-situ sea surface temperature observations under weak wind and clear sky conditions using numerical models. J. Atmos. Oceanic Technol., 17, 185–196.

    Article  Google Scholar 

  • Kawai, Y. and H. Kawamura (2003): Validation of daily amplitude of seasurface temperature evaluated with a parametric model using satellite data. J. Oceanogr., 59, 637–644.

    Article  Google Scholar 

  • Kawai, Y. and H. Kawamura (2005): Spatial and temporal variations of model-derived diurnal amplitude of sea surface temperature in the western Pacific ocean. J. Geophys. Res., 110, C08012, doi: 10.1029/2004JC002652.8, 589–605.

    Article  Google Scholar 

  • Kawai, Y. and A. Wada (2007): Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721–744.

    Article  Google Scholar 

  • Kawai, Y., H. Kawamura, S. Takahashi, K. Hosoda, H. Murakami, M. Kachi and L. Guan (2006a): Satellite-based global daily 0.1°-grid optimum interpolation sea surface temperature data. J. Geophys. Res., 111, C06016, doi:10.1029/2005JC003313.

    Article  Google Scholar 

  • Kawai, Y., H. Kawamura, S. Tanba, K. Ando, K. Yoneyama and N. Nagahama (2006b): Validity of sea surface temperature observed with the TRITON buoy under diurnal heating conditions. J. Oceanogr., 62(6), 825–838.

    Article  Google Scholar 

  • Kilpatrick, K. A., G. P. Podesta and R. Evans (2001): Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106, 9179–9198.

    Article  Google Scholar 

  • Koizumi, M. (1956): Researches on variations of oceanographic conditions in the region of the ocean weather station “Extra” in the North Pacific Ocean (IV)—On the diurnal variations in air and sea-surface temperatures—. Papers in Meteorology and Geophysics, 7, 145–157.

    Google Scholar 

  • Kondo, J., O. Kanechika and N. Yasuda (1978): Heat and momentum transfer and strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 1012–1021.

    Article  Google Scholar 

  • Lau, N.-C. and M. J. Nath (1994): A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J. Climate, 7, 1184–1207.

    Article  Google Scholar 

  • Noh, Y. and H. J. Kim (1999): Simulation of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15621–15634.

    Article  Google Scholar 

  • Notarstefano, G., E. Mauri and P.-M. Poulain (2006): Near-surface thermal structure and surface diurnal warming in the Adriatic sea using satellite and drifter data. Remote Sens. Environ., 101, 194–211.

    Article  Google Scholar 

  • Price, J. F., R. A. Weller, C. M. Bowers and M. G. Briscoe (1987): Diurnal response of sea surface temperature observed at the long-term upper ocean study (34°N, 70°W) in the Sargasso Sea. J. Geophys. Res., 92, 14480–14490.

    Article  Google Scholar 

  • Qin, H., Y. Kawai and H. Kawamura (2006): Comparison of downward surface solar radiation derived from GMS5/VISSR and of reanalysis products. J. Oceanogr., 62, 577–586.

    Article  Google Scholar 

  • Qin, H., H. Kawamura and Y. Kawai (2007): Detection of hot event in the equatorial Indo-Pacific warm pool using advanced satellite sea surface temperature, solar radiation, and wind speed. J. Geophys. Res., 112, C07015, doi:10.1029/2006JC003969.

    Article  Google Scholar 

  • Soloviev, A. V. and R. Lukas (1997): Large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res., 44, 1055–1076.

    Article  Google Scholar 

  • Soloviev, A. V. and R. Lukas (2006): The Near-Surface Layer of the Ocean: Structure, Dynamics, and Applications. Springer, Netherlands, 572 pp.

    Google Scholar 

  • Stommel, H., K. Sanders, W. Simmons and J. Cooper (1969): Observations of the diurnal thermocline. Deep-Sea Res., 16, 269–284.

    Google Scholar 

  • Tompkins, A. M. (2001): On the relationship between tropical convection and sea surface temperature. J. Climate, 14, 633–637.

    Article  Google Scholar 

  • Waliser, D. E. (1996): Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Climate, 9, 161–187.

    Article  Google Scholar 

  • Waliser, D. E. and N. E. Graham (1993): Convective cloud systems and warm pool sea surface temperatures: Coupled interactions and selfregulation. J. Geophys. Res., 98, 12881–12893.

    Article  Google Scholar 

  • Ward, B. (2006): Near-surface ocean temperature. J. Geophys. Res., 111, C02005, doi: 10.1029/2004JC002689.

    Article  Google Scholar 

  • Ward, B., R. Wanninkhof, W. R. McGillis, A. T. Jessup, M. D. DeGrandpre, J. E. Hare and J. B. Edson (2004): Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients. J. Geophys. Res., 109, C08S08, doi:10.1029/2003JC001800.

    Article  Google Scholar 

  • Webster, P. J. (1994): The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys., 32, 427–476.

    Article  Google Scholar 

  • Yokoyama, R., S. Tanba and T. Souma (1995): Sea surface effects on the sea surface temperature estimation by remote sensing. Int. J. Remote Sens., 16, 227–238.

    Article  Google Scholar 

  • Zhang, G. J. and M. McPhaden (1995): The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J. Climate, 8, 589–605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kawamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamura, H., Qin, H. & Ando, K. In-situ diurnal sea surface temperature variations and near-surface thermal structure in the tropical hot event of the Indo-Pacific warm pool. J Oceanogr 64, 847–857 (2008). https://doi.org/10.1007/s10872-008-0070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0070-9

Keywords

Navigation