Skip to main content
Log in

Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar)

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

I present the derivation of the Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar), which is developed for adopting a non-diagonal background error covariance matrix in nonlinear variational analyses (i.e., analyses employing a non-quadratic cost function). POpULar is based on the idea of a linear preconditioned conjugate gradient method widely adopted in ocean data assimilation systems. POpULar uses the background error covariance matrix as a preconditioner without any decomposition of the matrix. This preconditioning accelerates the convergence. Moreover, the inverse of the matrix is not required. POpULar therefore allows us easily to handle the correlations among deviations of control variables (i.e., the variables which will be analyzed) from their background in nonlinear problems. In order to demonstrate the usefulness of POpULar, we illustrate two effects which are often neglected in studies of ocean data assimilation before. One is the effect of correlations among the deviations of control variables in an adjoint analysis. The other is the nonlinear effect of sea surface dynamic height calculation required when sea surface height observation is employed in a three-dimensional ocean analysis. As the results, these effects are not so small to neglect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beale, E. M. (1972): A derivation of conjugate-gradients. p. 39–43. In Numerical Methods for Non-Linear Optimization, ed. by F. A. Lootsma, Academic Press.

  • Climate Prediction Division (2002): Improvement of the seasonal forecast (the three-month and summer/winter forecasts). The text of the seasonal forecast training 2002. Climate Prediction Division, Climate and Marine Department, JMA, Tokyo, Japan, 82 pp. (in Japanese).

    Google Scholar 

  • Cohn, S. E. (1997): An introduction to estimation theory. J. Meteorol. Soc. Japan, 75, 257–288.

    Google Scholar 

  • Cohn, S. E., A. Da Silva, J. Guo, M. Sienkiewicz and D. Lamich (1998): Assesing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126, 2913–2926.

    Google Scholar 

  • Conkright, M. E., S. Levitus, T. O’Brien, T. P. Boyer, C. Stephens, D. Johnson, L. Stathoplos, O. Baranova, J. Antonov, R. Gelfeld, J. Burney, J. Rochester and C. Forgy (1998): World Ocean Database 1998 CD-ROM Data Set Documentation Version 1.2, National Oceanographic Data Center Internal Report 14, NOAA, Washington, D.C., 37 pp.

    Google Scholar 

  • Courtier, P. (1997): Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc., 123, 2449–2461.

    Google Scholar 

  • Davidon, W. C. (1959): Variable metric method for minimization. A. E. C., R. and D. Rep. ANL-5990 (Rev), Argonne National Laboratory.

  • Derber, J. and F. Bouttier (1999): A reformation of the background error covariance in the ECMWF Global Data Assimilation System. Tellus, 51A, 195–221.

    Google Scholar 

  • Derber, J. and A. Rosati (1989): A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 1333–1347.

    Google Scholar 

  • Fujii, Y. and M. Kamachi (2003a): A reconstruction of observed profiles in the sea east of Japan using vertical coupled temperature-salinity EOF modes. J. Oceanogr., 59, 173–186.

    Google Scholar 

  • Fujii, Y. and M. Kamachi (2003b): A nonlinear preconditioned quasi-Newton method without inversion of a first-guess covariance matrix in variational analyses. Tellus, 55A, 450–454.

    Google Scholar 

  • Golub, G. H. and C. F. Van Loan (1996): Matrix Computations. 3rd ed., The Johns Hopkins University Press, Baltimore, U.S.A., 694 pp.

    Google Scholar 

  • Heckley, W. A., P. Courtier, J. Pailleux and E. Anderson (1992): The ECMWF variational analysis: general formulation and use of background information. In: ECMWF workshop proceedings. Variational assimilation with special emphasis on three-dimensional aspects. ECMWF, Reading, U.K., 49–94. Available from ECMWF, Shinfield Park, Reading, RG2 9AX, U.K.

    Google Scholar 

  • Huang, B., J. L. Kinter, III and P. S. Schopf (1999): An ocean data assimilation system with intermittent analyses and continuous model error correction. COLA Technical Report 72. COLA, University of Maryland, Calverton, Maryland, U.S.A., 60 pp. Avairable from COLA, University of Maryland, Calverton, Maryland, 20705-3106, U.S.A.

  • Huang, X. (2000): Variational analysis using spatial filters. Mon. Wea. Rev., 128, 2588–2600.

    Google Scholar 

  • Iwao, T., M. Endoh, N. Shikama and T. Nakano (2003): Intermediate Circulation in the northwestern North Pacific derived from subsurface floats. J. Oceanogr., 59, 893–904.

    Google Scholar 

  • Ji, M., A. Leetmaa and J. Derber (1995): An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev., 123, 460–481.

    Google Scholar 

  • Ji, M., R. W. Reynolds and D. Behringer (2000): Use of TOPEX/Poseidon sea level data for ocean analysis and ENSO prediction. Some early results. J. Climate, 13, 216–231.

    Google Scholar 

  • Kaplan A., Y. Kushnir and M. A. Cane (2000): Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J. Climate, 13, 2987–3002.

    Google Scholar 

  • Kuragano, T. and M. Kamachi (1997): Investigation of temperature and salinity fields statistically derived from TOPEX/POSEIDON altimeter data. Proceedings of the Symposium Monitoring the Ocean in the 2000s. An Integrated Approach, Biarritz, France, Session 4, 29.

  • Kuragano, T. and M. Kamachi (2000): Global statistical space-time scales of oceanic variability estimated from the TOPEX/POSEIDON altimeter data. J. Geophys. Res., 105, 955–974.

    Google Scholar 

  • Kuragano, T. and A. Shibata (1997): Sea surface dynamic height of the Pacific Ocean derived from TOPEX/POSEIDON altimeter data: Calculation method and accuracy. J. Oceanogr., 53, 585–599.

    Google Scholar 

  • Liu, D. C. and J. Nocedal (1989): On the limited memory BFGS method for large scale optimization. Math. Program., 45, 503–528.

    Google Scholar 

  • Lorenc, A. C. (1986): Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 1177–1194.

    Google Scholar 

  • Lorenc, A. C. (1988): Optimal nonlinear objective analysis. Q. J. R. Meteorol. Soc., 114, 205–240.

    Google Scholar 

  • Maes, C., D. Behringer, R. W. Reynolds and M. Ji (2000): Retrospective analysis of the salinity variability in the western tropical Pacific Ocean using an indirect minimization approach. J. Atmos. Oceanic Technol., 17, 512–524.

    Google Scholar 

  • Morrow, R. and P. DeMey (1995): Adjoint assimilation of altimetric, surface drifter, and hydrographic data in a quasigeostrophic model of Azores current. J. Geophys. Res., 100, 25,007–25,025.

    Google Scholar 

  • Navon, I. M. and D. M. Legler (1987): Conjugate-gradient methods for large-scale minimization in Meteorology. Mon. Wea. Rev., 115, 1479–1502.

    Google Scholar 

  • Nocedal, J. (1980): Updating quasi-Newton matrices with limited storage. Math. Comput., 35, 773–782.

    Google Scholar 

  • Powell, M. J. D. (1977): Restart procedures for the conjugate-gradient methods. Math. Program., 12, 241–254.

    Google Scholar 

  • Shanno, D. F. (1978): Conjugate gradient methods with inexact searches. Math. Operations Res., 3, 244–256.

    Google Scholar 

  • Shanno, D. F. and K. H. Phua (1978): Matrix conditioning and nonlinear optimization. Math. Program., 14, 149–160.

    Google Scholar 

  • Uboldi, F. and M. Kamachi (2000): Time-space weak-constraint data assimilation for nonlinear models. Tellus, 52A, 412–421.

    Google Scholar 

  • UNESCO (1981): Tenth report of the joint panel on oceanographic tables and standard, Sidney, B.C., September 1980. Unesco Technical Papers in Marine Science, 36, 25 pp.

  • Vialard, J., A. T. Weaver, D. L. T. Anderson and P. Delecluse (2003): Three-and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part II: Physical validation. Mon. Wea. Rev., 131, 1379–1395.

    Google Scholar 

  • Wenzel, M., J. Schroter and D. Olbers (2001): The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation. Prog. Oceanogr., 48, 73–119.

    Google Scholar 

  • Zhu, J. and M. Kamachi (2000): An adaptive variational method for data assimilation with imperfect models. Tellus, 52A, 265–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, Y. Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar). J Oceanogr 61, 167–181 (2005). https://doi.org/10.1007/s10872-005-0029-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-005-0029-z

Keywords

Navigation