Skip to main content
Log in

Syntheses and Crystal Structures of Mn(II), Ni(II) and Cu(II) Coordination Compounds Assembled by Maleato and Dimethyl-2,2′-bipyridines

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Three complexes: {[Mn(H2O)(mal)(5dmb)·H2O}n] (1); [Ni2(H2O)6(mal)2(4dmb)2]·3H2O (2); [Cu2(mal)2(4dmb)2]·3H2O (3); where mal = maleato, 4dmb = 4,4′-dimethyl-2,2′-bipyridine, and 5dmb = 5,5′-dimethyl-2,2′-bipyridine; have been synthesized, using self-assembly solution reactions at ambient conditions. Crystallographic studies show that 1 crystallizes in an orthorhombic system, space group Pna21, with a = 17.4067(4) Å, b = 11.9672(2) Å, c = 8.2075(2) Å; V = 1709.70(6) Å3. Complex 2 has a monoclinic system, space group C2/c, with a = 21.206(8) Å, b = 7.523(3) Å, c = 25.399(10) Å; β = 109.755(8)°; V = 3813(2) Å3. Complex 3 crystallizes in a monoclinic system, space group C2/c, with a = 14.6976(12) Å, b = 11.3849(10) Å, c = 22.1638(18) Å; β = 101.2998(17)°; V = 3636.8(5) Å3. Complex 1 is a one-dimensional (1D) polymer, where the Mn centers are six-coordinated in a distorted octahedral geometry. 2 is a dinuclear complex, generated by supramolecular interactions, where Ni ions are six-coordinated in a distorted octahedral geometry. 3 is a dinuclear complex with five-coordinated Cu ions having a distorted square pyramidal geometry. All three complexes exhibit hydrogen bonding interactions, which generate 2D supramolecular structures in 1 and 2, whereas in complex 3 a 3D supramolecular array is formed. These novel complexes prove that the self-assembly of a dicarboxylate ligand (mal) with three different first-row transition metals, can afford coordination compounds with diverse structural characteristics and dimensionality, which can be attributed to the different ligand coordination modes and the coordination properties of the employed metals.

Graphical Abstract

Divergent coordination compounds of three different transition metals have been obtained due to the versatility in the coordination modes of maleato ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou HC, Long JR, Yaghi OM (2012) Chem Rev 112:673

    Article  CAS  PubMed  Google Scholar 

  2. Dua M, Li CP, Liub CS, Fang SM (2013) Coord Chem Rev 257:1282

    Article  CAS  Google Scholar 

  3. Das D, Banerjee R, Mondal R,. Howard JAK, Boese R, Desiraju GR (2006) Chem Commun 555

  4. Zhou XH, Li L, Li HH, Li A, Yang T, Huang W (2013) Dalton Trans 42:12403

    Article  CAS  PubMed  Google Scholar 

  5. Lusby PJ (2013) Annu Rep Prog Chem A 109:254

    Article  CAS  Google Scholar 

  6. Lescop C (2017) Acc Chem Res 50(4):885

    Article  CAS  PubMed  Google Scholar 

  7. Ye BH, Tong ML, Chen XM (2005) Coord Chem Rev 249:545

    Article  CAS  Google Scholar 

  8. Curiel D, Más-Montoya M, Sánchez G (2014) Coord Chem Rev 284:19

    Article  CAS  Google Scholar 

  9. Rosales-Vázquez LD, Sánchez-Mendieta V, Dorazco-González A, Martínez-Otero D, García-Orozco I, Morales-Luckie RA, Jaramillo-García J, Téllez-López A (2017) Dalton Trans 46:12516

    Article  PubMed  Google Scholar 

  10. Téllez-López A, Jaramillo-García J, Martínez-Domínguez R, Morales-Luckie RA, Camacho-López MA, Escudero R, Sánchez-Mendieta V (2015) Polyhedron 100:373

    Article  CAS  Google Scholar 

  11. Téllez-López A, Sánchez-Mendieta V, Jaramillo-García J, Rosales-Vázquez LD, García-Orozco I, Morales-Luckie RA, Escudero R, Morales-Leal F (2016) Trans Met Chem 41:879

    Article  CAS  Google Scholar 

  12. Zhao RL, Yue KF, Zhou C, Cheng QDM, Shi JT, Liu YL, Wanga YY (2013) Inorg Chim Acta 402:25

    Article  CAS  Google Scholar 

  13. Farnum GA, Martin DP, Sposato LK, Supkowski RM, LaDuca RL (2010) Inorg Chim Acta 363:250

    Article  CAS  Google Scholar 

  14. Hancock RD (2013) Chem Soc Rev 42:1500

    Article  CAS  PubMed  Google Scholar 

  15. Alizadeh R, Amani V (2016) Inorg Chim Acta 443:151

    Article  CAS  Google Scholar 

  16. Lopes LB, Corrêa CC, Guedes GP, Vaz MGF, Diniz R, Machado FC (2013) Polyhedron 50:16

    Article  CAS  Google Scholar 

  17. Zhang GM, Li Y, Zou XZ, Zhang JA, Gu JZ, Kirillov AM (2016) Trans Met Chem 41:153

    Article  CAS  Google Scholar 

  18. APEX 2 Software Suite. Bruker AXS Inc., Madison

  19. Sheldrick GM (2008) Acta Crystallogr A 64:112

    Article  CAS  PubMed  Google Scholar 

  20. Hübschle CB, Sheldrick GM, Dittrich B, shelXle (2011) Appl Cryst 44:1281

    Article  CAS  Google Scholar 

  21. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J Appl Cryst 41:466

    Article  CAS  Google Scholar 

  22. Rodríguez-Martín Y, Hernández-Molina M, Delgado FS, Pasán J, Ruiz-Pérez C, Sanchiz J, Lloret F, Julve M (2002) Cryst Eng Comm 4(87):522

    Article  Google Scholar 

  23. Rodríguez-Martín Y, Hernández-Molina M, Delgado FS, Pasán J, Ruiz-Pérez C, Sanchiz J, Lloret F, Julve M (2003) Dalton Trans 11:2359

    Article  Google Scholar 

  24. Ruiz-Pérez C, Hernández-Molina M, Sanchiz J, López T, Lloret F, Julve M (2000) Inorg Chim Acta 298:245

    Article  Google Scholar 

  25. Jiang CH, Qi YM, Sun Y, Chi Q, Guo YM (2012) J Mol Struct 1017:65

    Article  CAS  Google Scholar 

  26. Choudhury SR, Lee HM, Hsiao TH, Colacio E, Jana AD, Mukhopadhyay S (2010) J Mol Struct 967:131

    Article  CAS  Google Scholar 

  27. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans 1349

  28. Youngme S, Cheansirisomboon A, Danvirutai C, Pakawatchai C, Chaichit N (2008) Inorg Chem Commun 11:57

    Article  CAS  Google Scholar 

  29. Tokii T, Watanabe N, Nakashima M, Muto Y, Morooka M, Ohba S, Saito Y (1990) Bull Chem Soc Jpn 63:364

    Article  CAS  Google Scholar 

  30. Boonmak J, Youngme S, Chotkhun T, Engkagul C, Chaichit N, van Albada GA, Reedijk J (2008) Inorg Chem Commun 11:1231

    Article  CAS  Google Scholar 

  31. Nath JK, Mondal A, Powell AK, Baruah JB (2014) Cryst Growth Des 14:4735

    Article  CAS  Google Scholar 

  32. Das K, Panda U, Datta A, Roy S, Mondal S, Massera C, Askun T, Celikboyun P, Garribba E, Sinha C, Anand K, Akitsu T, Kobayashi K (2015) New J Chem 39:7309

    Article  CAS  Google Scholar 

  33. Novoa N, Roisnel T, Dorcet V, Cador O, Manzur C, Carrillo D, Hamon JR (2016) New J Chem 40:5920

    Article  CAS  Google Scholar 

  34. Mahapatra P, Ghosh S, Giri S, Rane V, Kadam R, Drew MGB, Ghosh A (2017) Inorg Chem 56:5105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to M. en C. Alejandra Nuñez Pineda (CCIQS UAEM-UNAM) for elemental analysis of compounds. Funding for this work was provided by Universidad Autónoma del Estado de México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Sánchez-Mendieta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Morales, N., Rodríguez-Olivas, M., Téllez-López, A. et al. Syntheses and Crystal Structures of Mn(II), Ni(II) and Cu(II) Coordination Compounds Assembled by Maleato and Dimethyl-2,2′-bipyridines. J Chem Crystallogr 49, 8–20 (2019). https://doi.org/10.1007/s10870-018-0731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0731-5

Keywords

Navigation