Skip to main content
Log in

Hydrogen Bonded 3D Supramolecular Architectures of Two Organic Salts Assembled from 2-Aminoheterocyclic Compounds and Phosphoric Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two phosphate salts (2-aminopyrimidine): (phosphoric acid): H2O [HL1+ (H2PO4)]·H2O (1), and (4-phenylthiazol-2-amine): (phosphoric acid) [HL2+·(H2PO4)] (2) based on 2-aminoheterocyclic compounds, 2-aminopyrimidine (L1), and 4-phenylthiazol-2-amine (L2) were prepared and structurally characterized by X-ray crystallography. Compound 1 crystallizes in the triclinic, space group P-1, with a = 6.2201(7) Å, b = 8.6139(9) Å, c = 9.4800(10) Å, α = 109.685(2)°, β = 106.3340(10)°, γ = 95.4450(10)°, V = 448.72(8) Å3, Z = 2. For 1, the cations were linked to each other via intermolecular C–H···N hydrogen bonds to form a 1-D chain structure running along the a-axis direction. The anions and the water molecules were connected alternatively along the a-axis direction through O–H···O hydrogen bonds to form a 1-D chain also. The cationic chains and the anionic chains were alternatively connected along the c-axis direction through N–H···O and C–H···O hydrogen bonds to form a 2D corrugated sheet. Adjacent sheets were combined together through π–π interaction to form double sheet. These double sheets were further joined together by O–H···O and N–H···O hydrogen bonds to produce a 3D network structure. Compound 2 crystallizes in the Orthorhombic, space group Pbca, with a = 10.1929(10) Å, b = 8.4406(9) Å, c = 27.589(2) Å, α = 90°, β = 90°, γ = 90°, V = 2373.6(4) Å3, Z = 8. In 2, the phosphates formed 1D chain along the b-axis through two P–O–H···O = P hydrogen bonds. The cations formed 1D zigzag chain along the b-axis direction under the CH–π interaction. The anionic chains were intercalated between two adjacent cationic chains through N–H···O, O–H···O, C–H···O, and O–S contacts. Such stacking repeated along the c-axis direction to form a 3D network structure.

Graphical Abstracts

Due to the weak interactions, the complex displays 3D network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lehn JM (1995) Supramolecular chemistry: concepts and prospectives. VCH, Weinheim

    Book  Google Scholar 

  2. Desiraju GR, Sharma CVK (1995) Perspectives in supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  3. MacGillivray LR, Atwood JL (1999) Angew Chem Int Ed, England 38: 1018

    Google Scholar 

  4. Boncheva M, Bruzewicz DA, Whitesides GM (2003) Langmuir 19:6066

    Article  CAS  Google Scholar 

  5. Lehn JM (1990) Angew Chem Int Ed, England 29: 1304

    Google Scholar 

  6. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin

    Book  Google Scholar 

  7. Aakeröy CB, Beatty AM (2001) Aust J Chem 54:409

    Article  Google Scholar 

  8. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  9. Burrows AD (2004) Struct Bonding 108:55

    CAS  Google Scholar 

  10. Braga D, Maini L, Polito M, Grepioni F (2004) Struct Bonding 111:1

    Article  CAS  Google Scholar 

  11. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  12. Holman KT, Pivovar AM, Swift JA, Ward MD (2001) Acc Chem Res 34:107

    Article  CAS  Google Scholar 

  13. Gould PJ (1986) Int J Pharm 33:201

    Article  CAS  Google Scholar 

  14. Shan N, Bond AD, Jones W (2002) Cryst Eng 5:9

    Article  CAS  Google Scholar 

  15. Bhogala BR, Basavoju S, Nangia A (2005) Cryst Eng Comm 7:551

    CAS  Google Scholar 

  16. Lynch DE, Jones GD (2004) Acta Cryst B60:748

    CAS  Google Scholar 

  17. Jin SW, Liu B, Chen WZ (2007) Chin J Struct Chem 26:287

    CAS  Google Scholar 

  18. Jin SW, Chen WZ (2007) Chin J Inorg Chem 23:270

    CAS  Google Scholar 

  19. Jin SW, Wang DQ, Wang XL, Guo M, Zhao QJ (2008) J Inorg Organomet Polym 18:300

    Article  CAS  Google Scholar 

  20. Potewar TM, Ingale SA, Srinivasan KV (2008) Tetrahedron 64:5019

    Article  CAS  Google Scholar 

  21. Bruker (2004) SMART and SAINT. Bruker AXS, Madison

    Google Scholar 

  22. Sheldrick GM (2000) SHELXTL, structure determination software suite, version 6.14. Bruker AXS, Madison, WI

    Google Scholar 

  23. Sieroń L (2007) Acta Cryst E63:m2336

    Google Scholar 

  24. Scheinbeim J, Schempp E (1976) Acta Cryst B32:607

    CAS  Google Scholar 

  25. Czupiński O, Wojtaś M, Ciunik Z, Jakubas R (2006) Solid State Sci 8:86

    Article  Google Scholar 

  26. Domenicano A, Vaciago A, Coulson CA (1975) Acta Cryst B31:221

    CAS  Google Scholar 

  27. Ye MD, Hu ML, Ye CP (2002) Z Kristallogr New Cryst Struct 217:501

    CAS  Google Scholar 

  28. Lee JHP, Lewis BD, Mendes JM, Turnbull MM, Awwadi FF (2003) J Coord Chem 56:1425

    Article  CAS  Google Scholar 

  29. Goswami S, Mahapatra AK, Nigam GD, Chinnakali K, Fun HK, Razak IA (1999) Acta Cryst C55:583

    CAS  Google Scholar 

  30. Manfredini T, Pellacani GC, Bonamartini-Corradi A, Battaglia LP, Guarini GGT, Giusti JG, Pon G, Willett RD, West DX (1990) Inorg Chem 29:2221

    Article  CAS  Google Scholar 

  31. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  32. Lakshminarayanan PS, Ravikumar I, Suresh E, Ghosh P (2007) Chem Commun 48:5214

    Article  Google Scholar 

  33. Amendola V, Boiocchi M, Esteban-Gómez D, Fabbrizzi L, Monzani E (2005) Org Biomol Chem 3:2632

    Article  CAS  Google Scholar 

  34. Sessler JL, Cho DG, Lynch V (2006) J Am Chem Soc 128:16518

    Article  CAS  Google Scholar 

  35. Ju J, Park M, Suk JM, Lah MS, Jeong KS (2008) Chem Commun 36: 3546

  36. Xia YN, Wu B, Liu YY, Yang ZW, Huang XJ, He L, Yang XJ (2009) Cryst Eng Comm 11:1849

    CAS  Google Scholar 

  37. Allen FH, Raithby PR, Shields GP, Taylor R (1998) Chem Commun 1043

  38. Shanmuga Sundara Raj S, Fun HK, Lu ZL, Xiao W, Gong XY, Gen CM (2000) Acta Cryst C56:1015

    Google Scholar 

  39. Au-Alvarez O, Peterson RC, Crespo AA, Esteva YR, Alvarez HM, Stiven AMP, Hernández RP (1999) Acta Cryst C55:821

    CAS  Google Scholar 

  40. Form GR, Raper ES (1974) Acta Cryst B30:342

    Google Scholar 

  41. Light ME, Camiolo S, Gale PA, Hursthouse MB (2001) Acta Crystallogr Sect E Struct Rep Online 57:o727

    Article  Google Scholar 

  42. Ohama N, Machida M, Nakamura T, Kunifuji Y (1987) Acta Crystallogr Sect C Cryst Struct Commun 43:962

    Article  Google Scholar 

  43. Karle JM, Karle IL (1988) Acta Crystallogr Sect C Cryst Struct Commun 44:1605

    Article  Google Scholar 

  44. Ji C, Goddard JD, Houmam A (2004) J Am Chem Soc 126:8076

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the financial support of the Zhejiang A & F University Science Foundation (project No. 2009FK63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Wang, D. Hydrogen Bonded 3D Supramolecular Architectures of Two Organic Salts Assembled from 2-Aminoheterocyclic Compounds and Phosphoric Acid. J Chem Crystallogr 42, 276–282 (2012). https://doi.org/10.1007/s10870-011-0240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0240-2

Keywords

Navigation