Skip to main content
Log in

Effects of Anionic Geometries on Hydrogen-Bonding Networks of 1-(4-pyridyl) Piperazine

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A series of new salts have been obtained by the self-assembly of 1-(4-pyridyl) piperazine and inorganic ions or metal chloride in the hydrochloric acid medium, i.e. (C9H15N3 2+)·(Cl)2 (1) (C9H15N3 2+)·(NO3 )2 (2), (C9H15N3 2+)·(CuCl4 2−) (3), (C9H15N3 2+)·(CoCl4 2−) (4), (C9H15N3 2+)·(ZnCl4 2−) (5), {(C9H15N3 2+)·[Mn(H2O)2Cl4 2−]}·H2O (6), (C9H14N3 +)·(Sb2Cl7 ) (7) and (C9H15N3 2+)·(PbCl4 2−) (8). Structural analyses indicate that different anionic structure (e.g. spherical, trigonal planar, tetrahedral, octahedral, polyhedral and chain) can induce the formation of diverse architectures, influencing the crystallization ratio, the protonated number and the final structures. Extensive intermolecular interactions have been utilized for the self-assembly of diverse frameworks, ranging from strong X–H···Y (X=O, N; Y=Cl, O) hydrogen bonds to weak C–H···M (M=O, Cl) interactions. Among them, 3D hydrogen-bonding architectures are observed in 17 but only a 2D hydrogen-bonding architecture is observed in 8. Salt 6 crystallizes with water molecules but the others do not. Interestingly, the anions of salts 7 and 8 are dinuclear and 1D complex ions, respectively.

Graphical Abstract

A series of supramolecular salts have been obtained by the self-assembly of 1-(4-pyridyl) piperazine and inorganic acids or metal chloride in the hydrochloric acid medium. Structural analyses indicate that different anionic structure (e.g. spherical, trigonal planar, tetrahedral, octahedral, polyhedral and chain) can induce the formation of diverse supramolecular architectures, influencing the crystallization ratio, the protonated number and the final structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burrows AD (2004) Supramol Assem Hydrog Bonds I 108:55–95

    Article  CAS  Google Scholar 

  2. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629–1658

    Article  CAS  Google Scholar 

  3. Custelcean R (2010) Chem Soc Rev 39:3675–3685

    Article  CAS  Google Scholar 

  4. Altintas O, Schulze-Suenninghausen D, Luy B, Barner-Kowollik C (2015) Eur Polym J 62:409–417

    Article  CAS  Google Scholar 

  5. Yang SK, Ambade AV, Weck M (2010) J Am Chem Soc 132:1637–1645

    Article  CAS  Google Scholar 

  6. Schmidt B, Rudolph T, Hetzer M, Ritter H, Schacher FH, Barner-Kowollik C (2012) Polym Chem UK 3:3139–3145

    Article  CAS  Google Scholar 

  7. Miller AK, Li Z, Streletzky KA, Jamieson AM, Rowan SJ (2012) Polym Chem UK 3:3132–3138

    Article  CAS  Google Scholar 

  8. Braga D, Maini L, Polito M, Grepioni F (2004) In: Mingos DMP (ed) Supramolecular assembly via hydrogen bonds II. Springer, Berlin, pp 1–32

    Google Scholar 

  9. Steiner T (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  10. Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40:2382–2426

    Article  CAS  Google Scholar 

  11. Desiraju GR (2002) Acc Chem Res 35:565–573

    Article  CAS  Google Scholar 

  12. Ding HR, Lu YX, Wu WH, Liu HL (2014) Chem Phys 441:30–37

    Article  CAS  Google Scholar 

  13. Sherrington DC, Taskinen KA (2001) Chem Soc Rev 30:83–93

    Article  CAS  Google Scholar 

  14. Zheng YZ, Wang NN, Zhou Y, Yu ZW (2014) PCCP 16:6946–6956

    Article  CAS  Google Scholar 

  15. Brammer L (2004) Chem Soc Rev 33:476–489

    Article  CAS  Google Scholar 

  16. Mukherjee A (2015) Cryst Growth Des 15:3076–3085

    Article  CAS  Google Scholar 

  17. James SL, Lloyd GO, Zhang JY (2015) Cryst Eng Comm 17:7976–7977

    Article  CAS  Google Scholar 

  18. Yu R, Lin NB, Yu WD, Liu XY (2015) Cryst Eng Comm 17:7986–8010

    Article  CAS  Google Scholar 

  19. Aakeroy CB, Champness NR, Janiak C (2010) Cryst Eng Comm 12:22–43

    Article  CAS  Google Scholar 

  20. Desiraju GR (2013) J Am Chem Soc 135:9952–9967

    Article  CAS  Google Scholar 

  21. Desiraju GR (2007) Angew Chem Int Ed 46:8342–8356

    Article  CAS  Google Scholar 

  22. Bishop R (2015) Cryst Eng Comm 17:7448–7460

    Article  CAS  Google Scholar 

  23. Custelcean R (2010) Chem Soc Rev 39:3675–3685

    Article  CAS  Google Scholar 

  24. Pan F, Puttreddy R, Rissanen K, Englert U (2015) Cryst Eng Comm 17:6641–6645

    Article  CAS  Google Scholar 

  25. Allendorf MD, Stavila V (2015) Cryst Eng Comm 17:229–246

    Article  CAS  Google Scholar 

  26. Ding XH, Wang S, Li YH, Huang W (2015) Inorg Chem Front 2:263–272

    Article  CAS  Google Scholar 

  27. Zhang ZG, Schreiner PR (2009) Chem Soc Rev 38:1187–1198

    Article  CAS  Google Scholar 

  28. Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  29. Zhang Z-Y, Deng Z-P, Huo L-H, Zhao H, Gao S (2013) Cryst Eng Comm 15:5261–5274

    Article  CAS  Google Scholar 

  30. Evans NH, Beer PD (2014) Angew Chem Int Ed 53:11716–11754

    Article  CAS  Google Scholar 

  31. Ding XH, Wang S, Li YH, Huang W (2015) J Mol Struct 1079:266–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Natural Science Foundations of China (51173082), from Jiangsu Province [BM2012010, BK20141425 and PAPD (YX03001)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Wang, S., Li, YH. et al. Effects of Anionic Geometries on Hydrogen-Bonding Networks of 1-(4-pyridyl) Piperazine. J Chem Crystallogr 46, 309–323 (2016). https://doi.org/10.1007/s10870-016-0662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0662-y

Keywords

Navigation