Skip to main content
Log in

Surface analysis of nitrogen plasma-treated C60/PS nanocomposite films for antibacterial activity

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The influence of N2 plasma on the antibacterial properties of polystyrene/fullerene (C60/PS) nanocomposite films with two concentrations is investigated. A comparison is made between the surface characteristics of the films before and after plasma irradiation for different time intervals. The alterations induced on the surface of the films after treatment are analyzed by contact angle and surface energy measurements, FTIR spectroscopy, and atomic force microscopy. The antibacterial properties, growth, biofilm formation, and adhesion of the nanocomposite films against two multidrug-resistant bacterial strains, Staphylococcus aureus KT337489 and Pseudomonas aeruginosa KT337488, are investigated before and after plasma irradiation. The results indicate that P. aeruginosa is more sensitive to treatment than S. aureus as well as an enhancement of the anti-adhesion of both strains to treated surfaces through exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cordeiro, A.L., Nitschke, M., Janke, A., Helbig, R., D’Souza, F., Donnelly, G.T., Willemsen, P.R., Werner, C.: Fluorination of poly (dimethylsiloxane) surfaces by low pressure CF4 plasma—physicochemical and antifouling properties. Express Polymer Letters 3, 70–83 (2009)

  2. Chu, P.K., Chen, J.Y., Wang, L.P., Huang, N.: Plasma-surface modification of biomaterials. Mat. Sci. Eng. Res. 36, 143–206 (2002)

  3. Chou, N.J., Chang, C.A.: Surface Modification of Polymers. Butterworth-Heinemann Inc, Boston (1994)

  4. Ozdemir, M., Yurteri, C.U., Sadikoglu, H.: Surface treatment of food packaging polymers by plasmas. Food Technology 53, 54–58 (1999)

    Google Scholar 

  5. Pelagade, S.M., Singh, N.L., Rane, R.S., Mukherjee, S., Deshpande, U.P., Ganesan, V., Shripathi, T.: Investigation of surface free energy for PTFE polymer by bipolar argon plasma treatment. J. of Surf. Eng. Mater. and Adv. Technol. 2, 132–136 (2012)

  6. Inagaki, N.: Plasma Surface Modification and Plasma Polymerization. Technomic Publishing Company, Inc. (1996)

  7. Goddard, J.M., Hotchkiss, J.H.: Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 32, 698–725 (2007)

    Article  Google Scholar 

  8. Elsayed, N.M., Mansour, M.M., Farag, F.O., Elghazaly, H.M.: N2, N2-Ar and N2-He DC Plasmas for the improvement of polymethylmethacrylate surface wettability. Adv. Appl. Sci. Res. 3, 1327–1334 (2012)

    Google Scholar 

  9. Alekdeeva, O.V., Bagrovaskaya, N.A., Kuz’min, S.M., Noskov, A.V., Mlikhov, I.V., Rudin, V.N.: The influence of fullerene additives on the structure of polystyrene films. Russ. J. Phys. Ch. A 83, 1170–1175 (2009)

  10. Alekseeva, O.V., Bagrovskaya, N.A., Noskov, A.V.: Polystyrene film composite filled with fullerenes. Proc. Int. Conf., Nanomaterials: applications and properties. 2, 03NCNN24(pp3) (2013)

  11. Alekseeva, O.V., Krestov, G.A., Bagrovskaya, N.A., Noskov, A.V.: Effect of polystyrene/fullerene composites on free-radical processes in biological fluid. J. of Res. & Dev. in Chem. (2015). doi:10.5171/2015.304820

  12. Alekseeva, O.V., Bagrovskaya, N.A., Noskov, A.V.: Effect of C60 filling on structure and properties of composite films based on polystyrene. Arab. J. Chem. (2014). doi:10.1016/j.arabjc.2014.09.008

  13. Neoh, K.C., Kang, E.T.: Combating bacterial colonization on metals via polymer coating: relevance to marine and medical applications. ACS Appl. Mater Interfaces. 3, 22808–19 (2011)

    Article  Google Scholar 

  14. Arciola, C.R., Campoccia, D., Spezaile, P., Montanaro, L., Costerton, J.W.: Biofilm formation in staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33, 5967–82 (2012)

    Article  Google Scholar 

  15. Bakry, R., Vallant, R.M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C.W., Bonn, G.K.: Medicinal applications of fullerenes. Int. J. Nanomedicine 2, 639–649 (2007)

  16. Kumar, A.: Fullerenes for biomedical applications. J. Environ. Appl. Biores. 3, 175–191 (2015)

    Google Scholar 

  17. Hejda, F., Solař, P., Kousal, J.: Surface free energy determination by contact angle measurements—a comparison of various approaches. WDS’10 Proceedings of Contributed Papers. Part III, 25–30 (2010)

  18. Miller, J.M.: A Guide to Specimen Management in Clinical Microbiology. ASM Press, Washington, D.C. (1999)

  19. Murray, C.J., Lopez, A.D.: Mortality by cause for eight regions of the world: Global burden of disease study. Lancet 349, 1269–1276 (1997)

  20. NCCLS: National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Documents M2-A6 and M7-A4. Pennsylvania, USA (1999)

  21. Mather, T., Singhal, S., Khan, S., Upadhyay, D.J., Fatma, T., Rattan, A.: Detection of biofilm formation among the clinical isolates of Staphylococci: An evaluation of three different screening methods. Indian J. Med. Microbiol. 24, 25–29 (2006)

    Article  Google Scholar 

  22. Arciola, C.R., Baldassarri, L., Montanaro, L.: Presence of ica A and ica D genes and slim production in a collection of Staphylococcal strains from catheter associated infections. J. Clin. Microbiol. 39, 2151–2156 (2001)

    Article  Google Scholar 

  23. Holt, J.G., Krieg, N.R., Sneath, P.H., Staley, J.T., Williams, T., Hensyl, W.R.: Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, Maryland, USA (1994)

  24. Garrity, G.M., Brenner, D.J., Krieg, N.R., Staley, J.T.: Bergey’s Manual of Systematic Bacteriology. The Proteobacteria. Part B: The Gammaproteobacteria. Springer, New York (2005)

  25. De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W.B.: Bergey’s Manual of Systematic Bacteriology. The Firmicutes. Springer, New York (2009)

  26. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000)

    Article  Google Scholar 

  27. Liu, L.T., Coenye, J.L., Burns, P.W., Whitby, T.L., LiPuma, J.J.: Ribosomal DNA-directed PCR for identification of Achromobacter (Alcaligenes) xylosoxidans recovered from sputum samples from cystic fibrosis patients. J. Clin. Microbiol. 40, 1210–1213 (2002)

    Article  Google Scholar 

  28. Pandiyaraj, K.N., Deshmukh, R.R., Ram, B.S., Mahendiran, R.: Improvement of surface and biocompatible properties of flexible transparent nano-Tio2 films using glow discharge plasma. J. Nanosci. Nanotechnol. 2, 436–441 (2014)

    Google Scholar 

  29. Donald, S.B., Gerard, M., Wade, C.T., Hal, J.R., William, G.G., Seki, H., Charles, A.B., Mattanjah de Vries, S.: Vibrational Raman and infrared spectra of chromatographically separated C60, and C70 fullerene clusters. Chem. Phys. Lett. 179, 181–186 (1991)

    Article  Google Scholar 

  30. Jung-Woon, K., Kun-Ji, K., Sooyeon, P., Kwang-Un, J., Myong-Hoon, L.: Preparation and characterization of C60/polystyrene composite particle containing pristine C60 clusters. Bull. Korean Chem. Soc. 33, 2966–2970 (2012)

    Article  Google Scholar 

  31. Török, T., Urbán, P., Lassú, G.: Surface cleaning and corrosion protection using plasma technology. Int. J. Corros. Scale Inhib. 4, 116–124 (2015)

    Article  Google Scholar 

  32. Idage, S.B., Badrinarayanan, S.: Surface modification of polystyrene using nitrogen plasma. An X-ray photoelectron spectroscopy study. Langmuir 14, 2780–2785 (1998)

    Article  Google Scholar 

  33. Pandiyaraj, K., Deshmukh, R.R., Mahendiran, R., Su, P.-G., Yassitepe, E., Shahd, I., Perni, S., Prokopoviche, P., Nadagouda, M.N.: Influence of operating parameters on surface properties of RF glow discharge oxygen plasma-treated TiO2/PET film for biomedical application. Mat. Sci. Eng. C 36, 309–319 (2014)

    Article  Google Scholar 

  34. Vaidieki, K., Jyakumer, S., Thilagavathi, G.: Investigation on the antimicrobial activity of RF air plasma and Azadirachtin treated cotton fabric. J. Instrum. Soc. India 37, 258–266 (2007)

    Google Scholar 

  35. Akram, M., Shahid, M., Khan, A.U.: Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital, Aligarh, India. Ann. Clin. Microbiol. Antimicrob. 6, 4–8 (2007)

  36. Hassanein, W.A., EL-Zawahry, Y.A., Reda, F.M., Abd El-Rahman, R.A.: Molecular and microbiological studies on vancomycin- resistant Staphylococcus aureus strains isolated from burned patients. Egypt. J. Exp. Biol. (Bot.) 9, 219–231 (2013)

  37. Davies, D.: Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–22 (2003)

    Article  Google Scholar 

  38. Cameron, D.R., Howden, B.P., Peleg, A.Y.: The interface between antibiotic resistance and virulence in Staphylococcus aureus and its impact upon clinical outcomes. Clin Infect Dis. 53, 576–82 (2011)

  39. Pavithra, D., Doble, M.: Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention. Biomed. Mater. 3, 1–13 (2008)

    Article  Google Scholar 

  40. Pawde, S.M., Parab, S.S.: Spectroscopic and antibacterial studies of polystyrene thin films under air plasma and He-Ne laser treatment. Pramana 70, 935–948 (2008)

  41. Dizaj, S.M., Mennati, A., Jafari, S., Khezri, K., Adibkia, K.: Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 5, 19–23 (2015)

    Google Scholar 

  42. Da Ros, T.: Twenty years of promises: fullerene in medicinal chemistry, Vol. 1 of series carbon materials: Chemistry and Physics. Cataldo, F. and Da Ros, T. (eds), Springer (2008)

  43. Deryabin, D.G., Davydova, O.K., Yankina, Z.Z., Vasilchenko, A.S., Miroshnikov, S.A., Kornev, A.B.: The activity of [60] fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: A comparative study. J. Nanomater. 2014, 1–9 (2014)

  44. Ariciola, C.R., Maltarello, M.C., Cenni, E., Pizzoferrato, A.: Disposable contact lenses and bacterial adhesion. In vitro comparison between ionic/high-water content and non ionic/low-water content lenses. Biomaterials 16, 685–690 (1995)

    Article  Google Scholar 

  45. Arciola, C.R., Bustanji, Y., Conti, M., Campoccia, D., Baldassarri, L., Samori, B.: Staphylococcus epidermidis fibronectin binding and its inhibition by heparin. Biomaterials 24, 3013–19 (2003)

    Article  Google Scholar 

  46. Emerson, R.J., Bergstrom, T.S., Liu, Y., Soto, E.R., Brown, C.A., McGimpsey, W.G., Camesano, T.A.: Microscale correlation between surface chemistry, texture, and the adhesive strength of Staphylococcus epidermidis. Langmuir 22, 11311–11321 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Mohammed H. Elgazaly, The Physics Department Faculty of Science, Zagazig University, for his valuable guidance, advice, and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naglaa M. EL-Sayed.

Ethics declarations

Conflict of interests

The corresponding author certifies on behalf of all authors that there are no conflicts of interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-Sayed, N.M., Reda, F.M., Farag, O.F. et al. Surface analysis of nitrogen plasma-treated C60/PS nanocomposite films for antibacterial activity. J Biol Phys 43, 211–224 (2017). https://doi.org/10.1007/s10867-017-9447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-017-9447-6

Keywords

Navigation