Skip to main content
Log in

Obtaining, Structure, and Antimicrobial Properties of Nanocomposite Coatings Based on Polyurethane and Silver Nanoparticles

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A new method of obtaining of antimicrobial coatings based on segmented polyurethanes and silver nanoparticles (SNP) stabilized by an ionic liquid is proposed. The effect of silver nanoparticles on the structure and characteristics of the obtained materials have been studied using X-ray scattering, electron microscopy, infrared spectroscopy, differential scanning calorimetry, and the microbiological method of diffusion in agar. It is established that in the polymer matrix, SNPs with sizes from 7 to 19 nm are formed, and their size depends on the content of the stabilizer. The obtained nanocomposite coatings exhibit high antimicrobial activity against bacteria (S. aureus, E. coli) and fungi (C. albicans).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. M. M. Shameem, S. M. Sasikanth, R. Annamalai, et al., Mater. Today Proc., 45, 2536-2539 (2021), https://doi.org/10.1016/j.matpr.2020.11.254.

    Article  CAS  Google Scholar 

  2. E. A. Lysenkov, O. V. Stryutskiy, Yu. P. Gomza, et al., Funct. Mater., 22, No. 1, 40-46 (2015), https://doi.org/10.15407/fm22.01.040.

  3. E. A. Lysenkov, N. G. Leonova, and S. V. Zhiltsova, Theor. Exp. Chem., 55, No. 4, 250-257 (2019), https://doi.org/10.1007/s11237-019-09616-3.

    Article  CAS  Google Scholar 

  4. M. Pagel and A. G. Beck-Sickinger, Biol. Chem., 398, No. 1, 3-22 (2017), https://doi.org/10.1515/hsz-2016-0204.

    Article  CAS  PubMed  Google Scholar 

  5. S. M. Imani, L. Ladouceur, T. Marshall, et al., ACS Nano., 14, No. 10, 12341-12369 (2020), https://doi.org/10.1021/acsnano.0c05937.

    Article  CAS  PubMed  Google Scholar 

  6. L. L. Wang, C. Hu, and L. Q. Shao, Int. J. Nanomed., 12, 1227-1249 (2017), https://doi.org/10.2147/IJN.S121956.

    Article  CAS  Google Scholar 

  7. L. Guo, W. Yuan, Z. Lu, et al., Colloids Surf. A., 439, 69-83 (2013), https://doi.org/10.1016/j.colsurfa.2012.12.029.

    Article  CAS  Google Scholar 

  8. J. D. Oei, W. W. Zhao, L. Chu, et al., J. Biomed. Mater. Res. Part B., 100B, 409-415 (2012), https://doi.org/10.1002/jbm.b.31963.

    Article  CAS  Google Scholar 

  9. L. Cheng, S. Ren, and X. Lu, Polymers, 12, 407 (2020), https://doi.org/10.3390/polym12020407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Villani, F. Bertoglio, E. Restivo, et al., Materials, 13, 4296 (2020), https://doi.org/10.3390/ma13194296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. R. Silva and G. Unali, Nanotechnology, 22, 315605 (2011), https://doi.org/10.1088/0957-4484/22/31/315605.

  12. G. Kasi, S. Gnanasekar, Zhang K., et al., J. Appl. Polym. Sci., 139, No. 20, 52181 (2022), https://doi.org/10.1016/j.eurpolymj.2022.111087.

  13. J. Wang, D. Dai, H. Xie, et al., Int. J. Nanomed., 17, 6791-6819 (2022), https://doi.org/10.2147/IJN.S393207.

    Article  CAS  Google Scholar 

  14. M. A. Saleemi and V. Lim, Eur. Polym. J., 167, 111087 (2022), https://doi.org/10.1016/j.eurpolymj.2022.111087.

  15. V. V. Shevchenko, A. V. Stryutsky, N. S. Klymenko, et. al., Polymer, 55, No. 16, 3349-3359 (2014), https://doi.org/10.10167/j.polymer.2014.04.020.

  16. L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, et al., Langmuir., 17, No. 3, 574-577 (2001), https://doi.org/10.1021/la001038s.

    Article  CAS  Google Scholar 

  17. H. Xie, L. Wu, B.-G. Li, et al., Polymer, 155, 89-98 (2018), https://doi.org/10.1016/j.polymer.2018.09.033.

    Article  CAS  Google Scholar 

  18. W. Xu, P. A. Ledin, V. V. Shevchenko, et al., ACS Appl. Mater. Interfaces, 7, No. 23, 12570-12596 (2015), https://doi.org/10.1021/acsami.5b01833.

    Article  CAS  PubMed  Google Scholar 

  19. N. Tian, X. F. Ni, and Z. Q. Shen, React. Funct. Polym., 101, 39-46 (2016), https://doi.org/10.1016/j.reactfunctpolym.2016.02.005.

  20. S. Dawadi, S. Katuwal, A. Gupta, et al., J. Nanomater., 2021, 6687290 (2021), https://doi.org/10.1155/2021/6687290.

    Article  CAS  Google Scholar 

  21. G. Yang, J. Xie, F. Hong, et al., Carbohydr. Polym., 87, No. 1, 839-845 (2012), https://doi.org/10.1016/j.carbpol.2011.08.079.

  22. E. Lysenkov, O. Stryutsky, and L. Polovenko, 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), Krakow, Poland, 01-04 (2022), https://doi.org/10.1109/NAP55339.2022.9934675.

    Book  Google Scholar 

  23. J. W. Rhim, L. F. Wang, and S. I. Hong, Food Hydrocolloids, 33, No. 2, 327-335 (2013), https://doi.org/10.1016/j.foodhyd.2013.04.002.

    Article  CAS  Google Scholar 

  24. K. Luo, L. Wang, X. Chen, et al., Polymers, 12, 2631 (2020), https://doi.org/10.3390/polym12112631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Z. Qin, L. Yunhui, and C. C. Kevin, Colloids Surf. B., 102, 345-360 (2013), https://doi.org/10.1016/j.colsurfb.2012.07.037.

  26. Y. Meng, Nanomaterials, 5, 1124-1135 (2015), https://doi.org/10.3390/nano5021124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Triebel, S. Vasylyev, C. Damm, et al., J. Mater. Chem., 21, 4377-4383 (2011), https://doi.org/10.1039/C0JM03487H.

  28. M. Akbarian, M. E. Olya, M. Ataeefard, et al., Prog. Org. Coat., 75, No 4, 344-348 (2012), https://doi.org/10.1016/j.porgcoat.2012.07.017.

    Article  CAS  Google Scholar 

  29. I. Mtimet, L. Lecamp, N. Kebir, et al., Polym. J., 44, 1230-1237 (2012), https://doi.org/10.1038/pj.2012.90.

    Article  CAS  Google Scholar 

  30. B. S. Kim, J. S. Hrkach, and R. Langer, Biomaterials, 21, No. 3, 259-265 (2000), https://doi.org/10.1016/S0142-9612(99)00174-X.

Download references

Acknowledgements

The work was performed within the research on “Development of Innovative Technologies for the Creation of the Latest Silver-Containing Antimicrobial Nanocomposite Polymer Materials with Specified Multifunctional Characteristics for Special Purposes”, which is financed from the state budget by the Ministry of Education and Science of Ukraine. State registration number 0122U002326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lysenkov.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 2, pp. 114-121, March-April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenkov, E.A., Stryutsky, O.V., Klymenko, L.P. et al. Obtaining, Structure, and Antimicrobial Properties of Nanocomposite Coatings Based on Polyurethane and Silver Nanoparticles. Theor Exp Chem 59, 126–135 (2023). https://doi.org/10.1007/s11237-023-09772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09772-7

Keywords

Navigation