Skip to main content
Log in

Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In the nervous system, Hes1 shows an oscillatory manner in neural progenitors but a persistent one in neurons. Many models involving Hes1 have been provided for the study of neural differentiation but few of them take the role of microRNA into account. It is known that a microRNA, miR-9, plays crucial roles in modulating Hes1 oscillations. However, the roles of miR-9 in controlling Hes1 oscillations and inducing transition between different cell fates still need to be further explored. Here we provide a mathematical model to show the interaction between miR-9 and Hes1, with the aim of understanding how the Hes1 oscillations are produced, how they are controlled, and further, how they are terminated. Based on the experimental findings, the model demonstrates the essential roles of Hes1 and miR-9 in regulating the dynamics of the system. In particular, the model suggests that the balance between miR-9 and Hes1 plays important roles in the choice between progenitor maintenance and neural differentiation. In addition, the synergistic (or antagonistic) effects of several important regulations are investigated so as to elucidate the effects of combinatorial regulation in neural decision-making. Our model provides a qualitative mechanism for understanding the process in neural fate decisions regulated by Hes1 and miR-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kohwi, M., Doe, C.Q.: Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838 (2013)

    Article  Google Scholar 

  2. Shimojo, H., Ohtsuka, T., Kageyama, R.: Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008)

    Article  Google Scholar 

  3. Kabos, P., Kabosova, A., Neuman, T.: Blocking HES1 expression initiates GABAergic differentiation and induces the expression of p21(CIP1/WAF1) in human neural stem cells. J. Biol. Chem. 277, 8763–8766 (2002)

    Article  Google Scholar 

  4. Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Fujiwara, T., Ishidate, F., Kageyama, R.: Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342, 1203–1208 (2013)

    Article  ADS  Google Scholar 

  5. Baek, J.H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T., Kageyama, R.: Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467–2476 (2006)

    Article  Google Scholar 

  6. Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R.: Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002)

    Article  ADS  Google Scholar 

  7. Monk, N.A.: Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003)

    Article  Google Scholar 

  8. Zeiser, S., Müller, J., Liebscher, V.: Modeling the Hes1 oscillator. J. Comput. Biol. 14, 984–1000 (2007)

    Article  MathSciNet  Google Scholar 

  9. Momiji, H., Monk, N.A.: Oscillatory Notch-pathway activity in a delay model of neuronal differentiation. Phys. Rev. E. 80, 021930 (2009)

    Article  ADS  Google Scholar 

  10. Wang, R., Liu, K., Chen, L., Aihara, K.: Neural fate decisions mediated by trans-activation and cis-inhibition in Notch signaling. Bioinformatics 27, 3158–3165 (2011)

    Article  Google Scholar 

  11. Bonev, B., Stanley, P., Papalopulu, N.: MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep. 2, 10–18 (2012)

    Article  Google Scholar 

  12. Goodfellow, M., Phillips, N.E., Manning, C., Galla, T., Papalopulu, N.: microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states. Nat. Commun. 5, 3399 (2014)

    Article  ADS  Google Scholar 

  13. Pillai, R.S.: MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 1753–1761 (2005)

    Article  Google Scholar 

  14. Pasquinelli, A.E.: MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012)

    Google Scholar 

  15. Coolen, M., Katz, S., Bally-Cuif, L.: miR-9: a versatile regulator of neurogenesis. Front. Cell. Neurosci. 7, 220 (2013)

    Article  Google Scholar 

  16. Zhao, C., Sun, G., Li, S., Shi, Y.: A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol. 16, 365–371 (2009)

    Article  Google Scholar 

  17. Tan, S.L., Ohtsuka, T., González, A., Kageyama, R.: MicroRNA9 regulates neural stem cell differentiation by controlling Hes1 expression dynamics in the developing brain. Genes Cells 17, 952–961 (2012)

    Article  Google Scholar 

  18. Conaco, C., Otto, S., Han, J.J., Mandel, G.: Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl. Acad. Sci. U.S.A. 103, 2422–2427 (2006)

    Article  ADS  Google Scholar 

  19. Bredenkamp, N., Seoighe, C., Illing, N.: Comparative evolutionary analysis of the FoxG1 transcription factor from diverse vertebrates identifies conserved recognition sites for microRNA regulation. Dev. Genes Evol. 217, 227–233 (2007)

    Article  Google Scholar 

  20. Shibata, M., Nakao, H., Kiyonari, H., Abe, T., Aizawa, S.: MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J. Neurosci. 31, 3407–3422 (2011)

    Article  Google Scholar 

  21. Widder, S., Schicho, J., Schuster, P.: Dynamic patterns of gene regulation I: simple two-gene systems. J. Theor. Biol. 246, 395–419 (2007)

    Article  MathSciNet  Google Scholar 

  22. Uriu, K., Morishita, Y., Iwasa, Y.: Random cell movement promotes synchronization of the segmentation clock. Proc. Natl. Acad. Sci. U.S.A. 107, 4979–4984 (2010)

    Article  ADS  Google Scholar 

  23. Zhou, W., Li, Y., Wang, X., Wu, L., Wang, Y.: MiR-206-mediated dynamic mechanism of the mammalian circadian clock. BMC Syst. Biol. 5, 141 (2011)

    Article  Google Scholar 

  24. Zhou, P.P., Cai, S.M., Liu, Z.R., Wang, R.Q.: Mechanisms generating bistability and oscillations in microRNA-mediated motifs. Phys. Rev. E. 85, 041916 (2012)

    Article  ADS  Google Scholar 

  25. Lai, X., Bhattacharya, A., Schmitz, U., Kunz, M., Vera, J., Wolkenhauer, O.: A systems’ biology approach to study microRNA-mediated gene regulatory networks. Biomed. Res. Int. 2013, 703849 (2013)

    Google Scholar 

  26. Kiparissides, A., Koutinas, M., Moss, T., Newman, J., Pistikopoulos, E.N., Mantalaris, A.: Modelling the Delta1/Notch1 pathway: in search of the mediator(s) of neural stem cell differentiation. PLoS ONE 6, e14668 (2011)

    Article  ADS  Google Scholar 

  27. Jensen, M.H., Sneppen, K., Tiana, G.: Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett. 541, 176–177 (2003)

    Article  Google Scholar 

  28. Decroly, O., Goldbeter, A.: Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. U.S.A. 79, 6917–6921 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Leloup, J.C., Goldbeter, A.: Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor. Biol. 198, 445–459 (1999)

    Article  Google Scholar 

  30. Pendergast, J.S., Niswender, K.D., Yamazaki, S.: The complex relationship between the light-entrainable and methamphetamine-sensitive circadian oscillators: evidence from behavioral studies of Period-mutant mice. Eur. J. Neurosci. 38, 3044–3053 (2013)

    Google Scholar 

  31. Kobayashi, T., Mizuno, H., Imayoshi, I., Furusawa, C., Shirahige, K., Kageyama, R.: The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev. 23, 1870–1875 (2009)

    Article  Google Scholar 

  32. Hafizi, M., Atashi, A., Bakhshandeh, B., Kabiri, M., Nadri, S., Hosseini, R.H., Soleimani, M.: MicroRNAs as markers for neurally committed CD133+/CD34+ stem cells derived from human umbilical cord blood. Biochem. Genet. 51, 175–188 (2013)

    Article  Google Scholar 

  33. Annibali, D., Gioia, U., Savino, M., Laneve, P., Caffarelli, E., Nasi, S.: A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2. PLoS ONE 7, e40269 (2012)

    Article  ADS  Google Scholar 

  34. Indulekha, C.L., Divya, T.S., Divya, M.S., Sanalkumar, R., Rasheed, V.A., Dhanesh, S.B., Sebin, A., George, A., James, J.: Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression. Cell. Mol. Life Sci. 69, 611–627 (2012)

    Article  Google Scholar 

  35. Maddodi, N., Bhat, K.M., Devi, S., Zhang, S.C., Setaluri, V.: Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. J. Biol. Chem. 285, 242–254 (2010)

    Article  Google Scholar 

  36. Wolf, J., Becker-Weimann, S., Heinrich, R.: Analysing the robustness of cellular rhythms. Syst. Biol. (Stevenage) 2, 35–41 (2005)

    Article  Google Scholar 

  37. Tian, X.J., Zhang, X.P., Liu, F., Wang, W.: Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys. Rev. E. 80, 011926 (2009)

    Article  ADS  Google Scholar 

  38. Hart, Y., Alon, U.: The utility of paradoxical components in biological circuits. Mol. Cell 49, 213–221 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grants 11171206 and 11331009)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, Y., Liu, Z. et al. Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9. J Biol Phys 42, 53–68 (2016). https://doi.org/10.1007/s10867-015-9391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9391-2

Keywords

Navigation