Skip to main content

Advertisement

Log in

Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tlx3 (HOX11L2) is regarded as one of the selector genes in excitatory versus inhibitory fate specification of neurons in distinct regions of the nervous system. Expression of Tlx3 in a post-mitotic immature neuron favors a glutamatergic over GABAergic fate. The factors that regulate Tlx3 have immense importance in the fate specification of glutamatergic neurons. Here, we have shown that Notch target gene, Hes-1, negatively regulates Tlx3 expression, resulting in decreased generation of glutamatergic neurons. Down-regulation of Hes-1 removed the inhibition on Tlx3 promoter, thus promoting glutamatergic differentiation. Promoter–protein interaction studies with truncated/mutated Hes-1 protein suggested that the co-repressor recruitment mediated through WRPW domain of Hes-1 has contributed to the repressive effect. Our results clearly demonstrate a new and unique role for canonical Notch signaling through Hes-1, in neurotransmitter/subtype fate specification of neurons in addition to its known functional role in proliferation/maintenance of neural progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jan YN, Jan LY (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75:827–830

    Article  PubMed  CAS  Google Scholar 

  2. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  PubMed  CAS  Google Scholar 

  3. Kintner C (2002) Neurogenesis in embryos and in adult neural stem cells. J Neurosci 22:639–643

    PubMed  CAS  Google Scholar 

  4. Ma Q (2006) Transcriptional regulation of neuronal phenotype in mammals. J Physiol 575:379–387

    Article  PubMed  CAS  Google Scholar 

  5. Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134:3771–3780

    Article  PubMed  CAS  Google Scholar 

  6. Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34:535–549

    Article  PubMed  CAS  Google Scholar 

  7. Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, Chen CL, Busslinger M, Goulding M, Onimaru H, Ma Q (2004) Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 7:510–517

    Article  PubMed  CAS  Google Scholar 

  8. Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132:5461–5469

    Article  PubMed  CAS  Google Scholar 

  9. Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, Brown C, Langevin LM, Seibt J, Tang H, Cunningham JM, Dyck R, Walsh C, Campbell K, Polleux F, Guillemot F (2004) Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J 23:2892–2902

    Article  PubMed  CAS  Google Scholar 

  10. Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q (2005) Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 8:1510–1515

    Article  PubMed  CAS  Google Scholar 

  11. Borghini S, Vargiolu M, Di Duca M, Ravazzolo R, Ceccherini I (2006) Nuclear factor Y drives basal transcription of the human TLX3, a gene overexpressed in T-cell acute lymphocytic leukemia. Mol Cancer Res 4:635–643

    Article  PubMed  CAS  Google Scholar 

  12. Yun K, Fischman S, Johnson J, De Angelis MH, Weinmaster G, Rubenstein JL (2002) Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. Development 129:5029–5040

    PubMed  CAS  Google Scholar 

  13. Del Barrio MG, Taveira-Marques R, Muroyama Y, Yuk DI, Li S, Wines-Samuelson M, Shen J, Smith HK, Xiang M, Rowitch D, Richardson WD (2007) A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool. Development 134:3427–3436

    Article  PubMed  Google Scholar 

  14. Peng CY, Yajima H, Burns CE, Zon LI, Sisodia SS, Pfaff SL, Sharma K (2007) Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord. Neuron 53:813–827

    Article  PubMed  CAS  Google Scholar 

  15. Batista MF, Jacobstein J, Lewis KE (2008) Zebrafish V2 cells develop into excitatory CiD and Notch signalling dependent inhibitory VeLD interneurons. Dev Biol 322:263–275

    Article  PubMed  CAS  Google Scholar 

  16. Cau E, Blader P (2009) Notch activity in the nervous system: to switch or not switch? Neural Dev 4:36

    Article  PubMed  Google Scholar 

  17. Sanalkumar R, Indulekha CL, Divya TS, Divya MS, Anto RJ, Vinod B, Vidyanand S, Jagatha B, Venugopal S, James J (2010) ATF2 maintains a subset of neural progenitors through CBF1/Notch independent Hes-1 expression and synergistically activates the expression of Hes-1 in Notch-dependent neural progenitors. J Neurochem 113:807–818

    Article  PubMed  CAS  Google Scholar 

  18. Kaczmarczyk SJ, Green JE (2001) A single vector containing modified cre recombinase and LOX recombination sequences for inducible tissue-specific amplification of gene expression. Nucleic Acids Res 29:E56

    Article  PubMed  CAS  Google Scholar 

  19. Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K, Kageyama R (2007) Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc Natl Acad Sci USA 104:11292–11297

    Article  PubMed  CAS  Google Scholar 

  20. Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD, Kopan R (2006) Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem 281:5106–5119

    Article  PubMed  CAS  Google Scholar 

  21. Muller P, Kietz S, Gustafsson JA, Strom A (2002) The anti-estrogenic effect of all-trans-retinoic acid on the breast cancer cell line MCF-7 is dependent on HES-1 expression. J Biol Chem 277:28376–28379

    Article  PubMed  CAS  Google Scholar 

  22. Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL (2000) rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26:383–394

    Article  PubMed  CAS  Google Scholar 

  23. Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, Sakai T, Minato N (2005) Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 25:4262–4271

    Article  PubMed  CAS  Google Scholar 

  24. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101:16–22

    Article  PubMed  CAS  Google Scholar 

  25. Sanalkumar R, Vidyanand S, Lalitha Indulekha C, James J (2010) Neuronal vs. glial fate of embryonic stem cell-derived neural progenitors (ES-NPs) is determined by FGF2/EGF during proliferation. J Mol Neurosci 42:17–27

    Article  PubMed  CAS  Google Scholar 

  26. James J, Das AV, Bhattacharya S, Chacko DM, Zhao X, Ahmad I (2003) In vitro generation of early-born neurons from late retinal progenitors. J Neurosci 23:8193–8203

    PubMed  CAS  Google Scholar 

  27. Kondo T, Sheets PL, Zopf DA, Aloor HL, Cummins TR, Chan RJ, Hashino E (2008) Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells. Proc Natl Acad Sci USA 105:5780–5785

    Article  PubMed  CAS  Google Scholar 

  28. Marek KW, Kurtz LM, Spitzer NC (2010) cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification. Nat Neurosci 13:944–950

    Article  PubMed  CAS  Google Scholar 

  29. Borghini S, Bachetti T, Fava M, Di Duca M, Cargnin F, Fornasari D, Ravazzolo R, Ceccherini I (2006) The TLX2 homeobox gene is a transcriptional target of PHOX2B in neural-crest-derived cells. Biochem J 395:355–361

    Article  PubMed  CAS  Google Scholar 

  30. Giagtzoglou N, Alifragis P, Koumbanakis KA, Delidakis C (2003) Two modes of recruitment of E(spl) repressors onto target genes. Development 130:259–270

    Article  PubMed  CAS  Google Scholar 

  31. Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, Ball DW (1997) Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA 94:5355–5360

    Article  PubMed  CAS  Google Scholar 

  32. Chen G, Courey AJ (2000) Groucho/TLE family proteins and transcriptional repression. Gene 249:1–16

    Article  PubMed  CAS  Google Scholar 

  33. Buscarlet M, Perin A, Laing A, Brickman JM, Stifani S (2008) Inhibition of cortical neuron differentiation by Groucho/TLE1 requires interaction with WRPW, but not Eh1, repressor peptides. J Biol Chem 283:24881–24888

    Article  PubMed  CAS  Google Scholar 

  34. Fisher AL, Ohsako S, Caudy M (1996) The WRPW motif of the hairy-related basic helix–loop–helix repressor proteins acts as a 4-amino-acid transcription repression and protein–protein interaction domain. Mol Cell Biol 16:2670–2677

    PubMed  CAS  Google Scholar 

  35. Ross DA, Hannenhalli S, Tobias JW, Cooch N, Shiekhattar R, Kadesch T (2006) Functional analysis of Hes-1 in preadipocytes. Mol Endocrinol 20:698–705

    Article  PubMed  CAS  Google Scholar 

  36. Nuthall HN, Joachim K, Stifani S (2004) Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2 is important for inhibition of neuronal differentiation. Mol Cell Biol 24:8395–8407

    Article  PubMed  CAS  Google Scholar 

  37. Bouhon IA, Joannides A, Kato H, Chandran S, Allen ND (2006) Embryonic stem cell-derived neural progenitors display temporal restriction to neural patterning. Stem Cells 24:1908–1913

    Article  PubMed  CAS  Google Scholar 

  38. Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian helix–loop–helix factors structurally related to Drosophila hairy and enhancer of split. Genes Dev 6:2620–2634

    Article  PubMed  CAS  Google Scholar 

  39. Jogi A, Ora I, Nilsson H, Lindeheim A, Makino Y, Poellinger L, Axelson H, Pahlman S (2002) Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 99:7021–7026

    Article  PubMed  CAS  Google Scholar 

  40. Hatano M, Iitsuka Y, Yamamoto H, Dezawa M, Yusa S, Kohno Y, Tokuhisa T (1997) Ncx, a Hox11-related gene, is expressed in a variety of tissues derived from neural crest cells. Anat Embryol (Berl) 195:419–425

    Article  CAS  Google Scholar 

  41. Qian Y, Shirasawa S, Chen CL, Cheng L, Ma Q (2002) Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1. Genes Dev 16:1220–1233

    Article  PubMed  CAS  Google Scholar 

  42. Shirasawa S, Arata A, Onimaru H, Roth KA, Brown GA, Horning S, Arata S, Okumura K, Sasazuki T, Korsmeyer SJ (2000) Rnx deficiency results in congenital central hypoventilation. Nat Genet 24:287–290

    Article  PubMed  CAS  Google Scholar 

  43. Sekiya T, Zaret KS (2007) Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell 28:291–303

    Article  PubMed  CAS  Google Scholar 

  44. Currie RA (1998) NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J Biol Chem 273:1430–1434

    Article  PubMed  CAS  Google Scholar 

  45. Bolognese F, Pitarque-Marti M, Lo Cicero V, Mantovani R, Maier JA (2006) Characterization of the human EDF-1 minimal promoter: involvement of NFY and Sp1 in the regulation of basal transcription. Gene 374:87–95

    Article  PubMed  CAS  Google Scholar 

  46. Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14:461–469

    Article  PubMed  CAS  Google Scholar 

  47. Hsieh J, Gage FH (2005) Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 17:664–671

    Article  PubMed  CAS  Google Scholar 

  48. Namihira M, Kohyama J, Abematsu M, Nakashima K (2008) Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci 363:2099–2109

    Article  PubMed  CAS  Google Scholar 

  49. Lee S, Lee SK (2010) Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 20:29–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Department of Science & Technology and the Department of Biotechnology, Government of India, and Intra mural grants from RGCB to JJ; CLI, RS, MSD, VAR and SBD were supported by research fellowships from CSIR & ICMR, Government of India. The authors thank Dr. R Kageyama, Dr. R Kopan, Dr. Anderstrom, Dr. Minato and Addgene for generously providing us the plasmid constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson James.

Additional information

C. L. Indulekha and T. S. Divya contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indulekha, C.L., Divya, T.S., Divya, M.S. et al. Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression. Cell. Mol. Life Sci. 69, 611–627 (2012). https://doi.org/10.1007/s00018-011-0765-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0765-8

Keywords

Navigation