Skip to main content
Log in

New insights into bioprotective effectiveness of disaccharides: an FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The aim of this study was the investigation of static magnetic field effects on haemoglobin secondary structure and the bioprotective effectiveness of two disaccharides, sucrose and trehalose. Samples of haemoglobin aqueous solutions, in the absence and in the presence of sucrose and trehalose, were exposed to a uniform magnetic field at 200 mT, which is the exposure limit established by the ICNIRP recommendation for occupational exposure. Spectral analysis by FTIR spectroscopy after 3 and 7 h of exposure revealed a decrease in the amide A vibration band for haemoglobin in bi-distilled water solution. Analogue exposures did not produce any appreciable change of amide A for haemoglobin in sucrose and trehalose solutions. Otherwise, no relative increase of \(\upbeta \)-sheet contents in amide I and II regions was detected for haemoglobin aqueous solutions, leading us to exclude the hypothesis that static magnetic fields can induce the formation of aggregates in the protein. In addition, a decrease in CH3 stretching linkages occurred for haemoglobin in bi-distilled water solution after exposure, which was not observed for haemoglobin in sucrose and trehalose aqueous solutions, providing further evidence of a bioprotective compensatory mechanism of such disaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belton, P.S., Gil, A.M.: IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34, 957–961 (1994)

    Article  Google Scholar 

  2. Crowe, L.M., Reid, D.S., Crowe, J.H.: Is trehalose special for preserving dry biomaterials? Biophys. J. 71, 2087–2093 (1996)

    Article  ADS  Google Scholar 

  3. Green, J.L., Angell, C.A.: Phase relation and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93, 2880–2882 (1989)

    Article  Google Scholar 

  4. Timasheff, S.N.: Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41, 13473–13482 (2002)

    Article  Google Scholar 

  5. Hédoux, A., Ionov, R., Willart, J.F., Lerbret, A., Affouard, F., Guinet, Y., Descamps, M., Prevost, D., Paccou, L., Danéde, F.: Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scattering and differential scanning calorimetry investigation. J. Chem. Phys. 124, 14703 (2006)

    Article  Google Scholar 

  6. Hédoux, A., Willart, J.F., Ionov, R., Affouard, F., Guinet, Y., Paccou, L., Lerbret, A., Descamps, M.: Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations. J. Phys. Chem. B 110, 22886–228893 (2006)

    Article  Google Scholar 

  7. Hédoux, A., Affouard, F., Descamps, M., Guinet, Y., Paccou, L.: Microscopic description of protein thermostabilization mechanisms with disaccharides from Raman spectroscopy investigations. J. Phys.: Condens. Matter 19, 205142 (2007)

    Article  ADS  Google Scholar 

  8. Hédoux, A., Willart, J.F., Paccou, L., Guinet, Y., Affouard, F., Lerbret, A., Descamps, M.: Thermostabilization mechanism of bovine serum albumin by trehalose. J. Phys. Chem. B 113, 6119–6126 (2009)

    Article  Google Scholar 

  9. Strickley, R.G., Anderson, B.D.: Solid-state stability of human insulin. II. Effect of water on reactive intermediate partitioning in lyophiles from pH 2-5 solutions: stabilization against covalent dimer formation. J. Pharm. Sci. 86, 645–653 (1997)

    Article  Google Scholar 

  10. Kaushik, J.K., Bhat, R.: J. Biol. Chem. 278, 26458 (2003)

    Article  Google Scholar 

  11. Magazù, S., Migliardo, F., Vadalà, M., Mondelli, C.: Correlation between bioprotective effectiveness and dynamic properties of trehalose–water, maltose–water and sucrose–water mixtures. Carbohydr. Res. 340(18), 2796–2801 (2005)

    Article  Google Scholar 

  12. Crowe, J.H., Carpenter, J.F., Crowe, L.M.: The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73–103 (1998)

    Article  Google Scholar 

  13. Donnamaria, M.C., Howard, E.I., Grigera, J.R.: Interaction of water with α,α-trehalose in solution: molecular dynamics simulation approach. J. Chem. Soc. Faraday Trans. 90, 2731–2735 (1994)

    Article  Google Scholar 

  14. Magazù, S., Migliardo, F., Ramirez-Cuesta, A.J.: Inelastic neutron scattering study on bioprotectant systems. J. R. Soc. Interf. 2(5), 527–532 (2005)

    Article  Google Scholar 

  15. Magazù, S., Maisano, G., Migliardo, P., Villari, V.: Experimental simulation of macromolecules in trehalose aqueous solutions: a photon correlation spectroscopy study. J. Chem. Phys. 111(19), 9086–9092 (1999)

    Article  ADS  Google Scholar 

  16. Affouard, F., Bordat, P., Descamps, M., Lerbret, A., Magazù, S., Migliardo, F., Ramirez-Cuesta, A.J., Telling, M.F.T.: A combined neutron scattering and simulation study on bioprotectant systems. Chem. Phys. 317(2–3), 258–266 (2005)

    Article  ADS  Google Scholar 

  17. Magazù, S., Migliardo, F., Telling, M.T.F.: α,α-trehalose–water solutions. VIII. Study of the diffusive dynamics of water by high-resolution quasi elastic neutron scattering. J. Phys. Chem. B 110(2), 1020–1025 (2006)

    Article  Google Scholar 

  18. Chadwick, P., Lowes, F.: Magnetic fields on British trains. Ann. Occup. Hyg. 42(5), 331–335 (1998)

    Google Scholar 

  19. Dietrich, F.M., Jacobs, W.L.: Survey and assessment of electric and magnetic field public exposure in the transportation environment. US Department of Transportation, Federal Railroad Administration 1999 (Report No PB99-130908)

  20. Muc, A.M.: Electromagnetic Fields Associated with Transportation Systems. Health Canada, Toronto (2001)

    Google Scholar 

  21. NIOSH (National Institute for Occupational Safety and Health—National Institute of Environmental Health Sciences, US Department of Energy): Questions and Answers—EMF in the Work-Place. Electric and Magnetic Fields Associated with the Use of Electric Power. National Institute of Environmental Health Sciences, Washinton, DC (1996)

  22. WHO (World Health Organization): Framework for Developing Health-Based EMF Standards. World Health Organization, Geneva (2006)

    Google Scholar 

  23. International Commission on Non-Ionizing Radiation Protection (ICNIRP): Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74, 494–522 (1998)

    Google Scholar 

  24. Jung, C.: Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J. Mol. Recognit. 13, 325–351 (2000)

    Article  Google Scholar 

  25. Byler, D.M., Susi, H.: Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymer 25, 469-487 (1986)

    Article  Google Scholar 

  26. Surewicz, W.K., Mantsch, H.H.: New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta 952, 115-130 (1988)

    Article  Google Scholar 

  27. Dong, A., Caughey, W.S.: Infrared methods for study of hemoglobin reaction and structures. Methods Enzymol. 232, 139-175 (1994)

    Article  Google Scholar 

  28. Zamfirescu, M., Rusu, I., Sajin, G., Sajin, M., Kovacs, E.: Efecte biologice ale radiaţiilor electromagnetice de radiofrecvenţă şi microunde, Editura Medicală, Bucureşti (2000)

  29. Tsui, S.L., Lee, A.K., Lui, S.K., Poon, R.T., Fan, S.T.: Acute intraoperative hemolysis and hemoglobinuria during radiofrequency ablation of hepatocellular carcinoma. Hepato-Gastroenterol. 50, 526–529 (2003)

    Google Scholar 

  30. Kim, Y.A., Elemesov, R.E., Akoev, V.R., Abdrasilov, B.S.: Study of erythrocyte hemolysis on exposure to strong 2.45 GHz electromagnetic radiation. Biophysics 50(1), S44–S50 (2005)

    Google Scholar 

  31. Smith, B.M., Franzen, S.: Single-pass attenuated total reflection Fourier transform infrared spectroscopy for the analysis of proteins in H2O solution. Anal. Chem. 74, 4076–4080 (2002)

    Article  Google Scholar 

  32. Susi, H., Byler, D.M.: Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130, 290-311 (1986)

    Article  Google Scholar 

  33. Yang, W.-J., Griffiths, P.R., Byler, D.M., Susi, H.: Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self deconvolution. Appl. Spectrosc. 39(2), 282–287 (1985)

    Article  ADS  Google Scholar 

  34. Krimm, S., Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181-364 (1986)

    Article  Google Scholar 

  35. Kato, K., Matsui, T., Tanaka, S.: Quantitative estimation of alpha-helix coil content in bovine serum albumin by Fourier transform-infrared spectroscopy. Appl. Spectrosc. 41(5), 861–865 (1987)

    Article  ADS  Google Scholar 

  36. Sarver, R.W., Krueger, W.C.: Protein secondary structure from Fourier transform infrared spectroscopy: a data base analysis. Anal. Biochem. 194, 89-100 (1991)

    Article  Google Scholar 

  37. Ismail, A.A., Mantch, H.H., Wong, P.T.T.: Aggregation of chymotrypsinogen: portrait by infrared spectroscopy. Biochim. Biophys. Acta 1121, 183–188 (1992)

    Article  Google Scholar 

  38. Lefevre, T., Subirade, M.: Molecular differences in the formation and structure of fine-stranded and particulate \(\upbeta \)-lactglobulin gels. Biopolymers 54, 578–586 (2000)

    Article  Google Scholar 

  39. Magazù, S., Calabrò, E., Campo, S.: FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human haemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J. Phys. Chem. B 114, 12144–12149 (2010)

    Article  Google Scholar 

  40. West, W. (ed.): Chemical Applications of Spectroscopy. Interscience Publishers, Inc., New York (1956)

    Google Scholar 

  41. McQuade, D.T., McKay, S.L., Powell, D.R., Gellman, S.H.J.: Am. Chem. Soc. 119, 8528 (1997)

    Article  Google Scholar 

  42. Lee, S.H., Mirkin, N.G., Krimm, S.: Biopolymers 49, 195 (1999)

    Article  Google Scholar 

  43. Chen, J., Park, J., Hochstrasser, R.M.: J. Phys. Chem. A 107, 10660 (2003)

    Article  Google Scholar 

  44. Park, J., Hochstrasser, R.M.: Chem. Phys. 323, 78 (2006)

    Article  ADS  Google Scholar 

  45. Miyazawa, T.: The characteristic band of secondary amides at 3100 cm_1. J. Mol. Spectrosc. 4, 168–172 (1960)

    Article  ADS  Google Scholar 

  46. Krimm, S., Dwivedi, A.M.: Vibrational analysis of peptides, polypeptides and proteins. XII-Fermi resonance analysis of the unperturbed ND stretching fundamental in polypeptides. J. Raman Spectrosc. 12, 133–137 (1982)

    Article  ADS  Google Scholar 

  47. Stuart, B.: Biological Applications of Infrared Spectroscopy. Analytical Chemistry of Open Learning. Wiley, Chichester 115 (1997)

  48. Dumas, P., Miller, L.: The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib. Spec. 32, 3–21 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Magazù.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magazù, S., Calabrò, E., Campo, S. et al. New insights into bioprotective effectiveness of disaccharides: an FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields. J Biol Phys 38, 61–74 (2012). https://doi.org/10.1007/s10867-010-9209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-010-9209-1

Keywords

Navigation