Skip to main content
Log in

A Hypomagnetic Field Modulates the Susceptibility of Erythrocytes to tert-Butyl Hydroperoxide in Rats

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Red blood cells of rats were exposed to the earth’s magnetic field and an attenuated magnetic field in the presence of tert-butyl hydroperoxide to induce oxidative stress. Spectral analysis within the wavelength range of 500–700 nm was used to estimate the concentration of three forms of hemoglobin: oxyhemoglobin, methemoglobin, and hemichrome, released during erythrocyte hemolysis. The concentration of reactive oxygen species was determined in samples by spin trapping using electron paramagnetic resonance. It was found that after 4 h of incubation at high tert-butyl hydroperoxide concentrations (>700 μM), red blood cells that were exposed to an attenuated magnetic field released considerably more (p < 0.05) hemoglobin, mostly methemoglobin. After 24 h of incubation at low tert-butyl hydroperoxide concentrations (≤350 μM), erythrocytes that were exposed to the earth’s magnetic field released relatively more (p < 0.001) hemoglobin, with methemoglobin as a major form of total hemoglobin. Red blood cells exposed to the attenuated magnetic field generated more oxygen radicals than cells exposed to the earth’s magnetic field. Under certain oxidative stress conditions, the attenuated magnetic field can impair the functional state of red blood cells and provoke cell death. However, low concentrations of reactive oxygen species can neutralize attenuated magnetic field effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. C. Finlay, S. Maus, C. D. Beggan, et al., Geophys. J. Int. 183 (3), 1216 (2010).

    Article  ADS  Google Scholar 

  2. F. Steinhilber, J. A. Abreu, J. Beer, et al., J. Geophys. Res. 115, 1 (2010).

    Article  Google Scholar 

  3. M. S. Berguig, M. Hamoudi, and J. L. Lemoueel, Arab. J. Geosci. 6 (4), 1063 (2011).

    Article  Google Scholar 

  4. T. R. Watters, P. J. McGovern, and R. P. Irwin III. Annu. Rev. Earth Planetary Sci. 35, 621 (2007).

    Article  ADS  Google Scholar 

  5. J. Ouyang and H. Li, J. Life Sci. Res. 4 (2), 14 (2017).

    Article  Google Scholar 

  6. A. P. Dubrov, The Geomagnetic Field and Life: Geomagnetobiology (Plenum, New York, 1978).

    Book  Google Scholar 

  7. N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004).

    Article  ADS  Google Scholar 

  8. B. Jia and P. Shang, Space Med. Med. Eng. 22, 308 (2009).

    Google Scholar 

  9. S. V. Surma, G. B. Belostotskaya, B. F. Shchegolev, et al., Bioelectromagnetics 35 (8), 537 (2014).

    Article  Google Scholar 

  10. C. F. Martino, H. Perea, U. Hopfner, et al., Bioelectromagnetics 31, 296 (2010).

    Article  Google Scholar 

  11. I. Y. Belyaev, Y. D. Alipov, and M. Harms-Ringdahl, Biochim. Biophys. Acta 1336, 465 (1997).

    Article  Google Scholar 

  12. I. S. Eldashev, B. F. Shchegolev, S. V. Surma, and G. B. Belostotskaya, Biophysics (Moscow) 55 (3), 765 (2010).

    Article  Google Scholar 

  13. I. M. Spivak, M. L. Kuranova, G. R. Mavropulo-Stolyarenko, et al., Biophysics (Moscow) 61 (3), 435 (2016).

    Article  Google Scholar 

  14. A. L. Buchachenko and R. G. Lawler, Accounts Chem. Res. 50 (4), 877 (2017).

  15. C. F. Martino and P. R. Castello, PLoS One 6 (8), e22753 (2011).

    Article  ADS  Google Scholar 

  16. C. F. Martino, L. Portelli, K. Mccabe, et al., Bioelectromagnetics 31, 649 (2010).

    Article  Google Scholar 

  17. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 63 (3), 365 (2018).

    Article  Google Scholar 

  18. T. Ritz, R. Wiltschko, P. J. Hore, et al., Biophys. J. 96, 3451 (2009).

    Article  ADS  Google Scholar 

  19. I. A. Solov’yov and K. Schulten, Biophys. J. 96, 4804 (2009).

    Article  Google Scholar 

  20. T. Ritz, S. Adem, and K. Schulten. Biophys. J. 78, 707 (2000).

    Article  Google Scholar 

  21. R. J. Usselman, C. Chavarriaga, P. R. Castello, et al., Sci. Reports 6, 1 (2016).

    Article  Google Scholar 

  22. P. H. Misra and I. Fridovich, J. Biol. Chem. 10, 6960 (1972).

    Google Scholar 

  23. C. Giulivi and E. Cadenas, Free Radic. Biol. Med. 24, 269 (1998).

    Article  Google Scholar 

  24. E. Lang and F. Lang, Semin. Cell Dev. Biol. 39, 35 (2015).

    Article  Google Scholar 

  25. I. I. Stepuro, N. A. Chaikovskauya, V. P. Vodoevich, et al., Biochemistry 62 (9), 967 (1997).

    Google Scholar 

  26. O. L. Lebedev and S. N. Kazarnowskii, Zh. Obshch. Khim. 30 (5), 1631 (1960).

    Google Scholar 

  27. T. Ide, H. Tsutsui, S. Kinugawa, et al., Circ. Res. 86 (2), 152 (2000).

    Article  Google Scholar 

  28. H. Utsumi, E. Muto, S. Masuda, and A. Hamada, Biochem. Biophys. Res. Commun. 172, 1342 (1990).

    Article  Google Scholar 

  29. S. V. Surma, P. A. Kuznetsov, R. S. Khrustaleva, et al., RF Patent No. 2 454 675 (June 27, 2012).

  30. Y. Benjamini, A. M. Krieger, and D. Yekutieli. Biometrika 93, 491 (2006).

    Article  MathSciNet  Google Scholar 

  31. A. D. Nadeev, V. P. Zinchenko, P. V. Avdonin, et al., Toksikol. Vestn. 2, 22 (2014).

    Google Scholar 

  32. A. D. Nadeev, I. V. Kudryavtsev, M. K. Serebryakova, et al., Tsitologiya 57 (12), 909 (2015).

    Google Scholar 

  33. N. V. Goncharov, P. V. Avdonin, A. D. Nadeev, et al., Curr. Pharm. Des. 21 (9), 1134 (2015).

    Article  Google Scholar 

  34. I. Mindukshev, I. Kudryavtsev, M. Serebriakova, et al., in Nutraceuticals: Efficacy, Safety and Toxicity, Ed. by R. C. Gupta (Academic Press/Elsevier, Amsterdam, 2016), pp. 319–332.

    Google Scholar 

  35. N. Goncharov, A. Orekhov, N. Voitenko, et al., in Nutraceuticals: Efficacy, Safety and Toxicity, Ed. by R. C. Gupta (Academic Press/Elsevier, Amsterdam, 2016), pp. 555–568.

    Google Scholar 

  36. B. Kalyanaraman, V. Darley-Usmar, K. J. Davies, et al., Free Radic. Biol. Med. 52 (1), 1 (2012).

    Article  Google Scholar 

  37. V. E. Stefanov, B. F. Shchegolev, O. V. Kryachko, et al., Klet. Biol. 461 (4), 485 (2015).

    Google Scholar 

  38. A. V. Domanski, E. A. Lapshina, and I. B. Zavodnik, Biochemistry (Moscow) 70 (7), 761 (2005).

    Article  Google Scholar 

  39. I. Sadowska-Woda, I. B. Sychta, M. Rachel, et al., Environ. Toxicol. Pharmacol. 30 (2), 141 (2010).

    Article  Google Scholar 

  40. Z. Liu, K. Han, Y. Lin, and X. Luo, Biochim. Biophys. Acta 1570, 97 (2002).

    Article  Google Scholar 

  41. T. N. Das, T. Dhanasekaran, Z. B. Alfassi, et al., J. Phys. Chem. A 102 (1), 280 (1998).

    Article  Google Scholar 

  42. http://en.wikipedia.org/wiki/Tert-Butyl_hydroperoxide

  43. P. S. Rao and E. Hayon, J. Phys. Chem. A 79 (4), 397 (1975).

    Article  Google Scholar 

  44. N. V. Goncharov, M. A. Terpilowski, A. D. Nadeev, et al., Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol. 12 (2) 180 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The measurements on the Elexsys E580 EPR spectrometer (BRUKER, Germany) were conducted in the Magnetic Resonance Methods of Research Resource Center of St. Petersburg State University.

Funding

The study was supported by AAAA-A18-118012290142-9 State Program and Program of Fundamental Research in State Academies, 2014–2020 (SP-14, section 63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Goncharov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terpilovskii, M.A., Khmelevskoy, D.A., Shchegolev, B.F. et al. A Hypomagnetic Field Modulates the Susceptibility of Erythrocytes to tert-Butyl Hydroperoxide in Rats. BIOPHYSICS 64, 374–380 (2019). https://doi.org/10.1134/S0006350919030230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919030230

Keywords:

Navigation