Skip to main content
Log in

Electronic pathway in reaction centers from Rhodobacter sphaeroides and Chloroflexus aurantiacus

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The reaction centers (RC) of Chloroflexus aurantiacus and Rhodobacter sphaeroides H(M182)L mutant were investigated. Prediction for electron transfer (ET) at very low temperatures was also performed. To describe the kinetics of the C. aurantiacus RCs, the incoherent model of electron transfer was used. It was shown that the asymmetry in electronic coupling parameters must be included to explain the experiments. For the description of R. sphaeroides H(M182)L mutant RCs, the coherent and incoherent models of electron transfer were used. These two models are discussed with regard to the observed electron transfer kinetics. It seems likely that the electron transfer asymmetry in R. sphaeroides RCs is caused mainly by the asymmetry in the free energy levels of L- and M-side cofactors. In the case of C. aurantiacus RCs, the unidirectionality of the charge separation can be caused mainly by the difference in the electronic coupling parameters in two branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H.: Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318, 618–624 (1985)

    Article  ADS  Google Scholar 

  2. Allen, J.P., Willams, J.C.: Photosynthetic reaction centers. FEBS Lett. 438, 5–9 (1998)

    Article  Google Scholar 

  3. Amesz, J.: The heliobacteria, a new group of photosynthetic bacteria. J. Photochem. Photobiol. B Biol. 30, 89–96 (1995)

    Article  Google Scholar 

  4. Sakurai, H., Kusumoto, N., Inoue, K.: Function of the reaction center of green sulfur bacteria. Photochem. Photobiol. 64, 5–13 (1996)

    Article  Google Scholar 

  5. Golbeck, J.H.: Shared thematic elements in photochemical reaction centers. Proc. Natl. Acad. Sci. U.S.A. 90, 1642–1646 (1993)

    Article  ADS  Google Scholar 

  6. Krauβ, N., Schubert, W.-D., Klukas, O., Fromme, P., Witt, H.T., Saenger, W.: Photosystem I at 4Å resolution represents the first structural model of a joint photosyn \(\neg\)thetic reaction center and core antenna system. Nat. Struct. Biol. 3, 965–973 (1996)

    Article  Google Scholar 

  7. Van Brederode, M.E., Jones, M.R., Van Mourik, F., Van Stokkum, I.H.M., Van Grondelle, R.: A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry 36, 6855–6861 (1997)

    Article  Google Scholar 

  8. Heller, B.A., Holten, D., Kirmaier, C.: Control of electron transfer between the L- and M-sides of photosynthetic reaction centers. Science 269, 940–945 (1995)

    Article  ADS  Google Scholar 

  9. Chuang, J.I., Boxer, S.G., Holten, D., Kirmaier, C.: Temperature dependence of electron transfer to the M-side bacteriopheophytin in Rhodobacter capsulatus reaction centers. J. Phys. Chem. B 112, 5487–5499 (2008)

    Article  Google Scholar 

  10. Kirmaier, Ch., Holten, D.: Evidence that a distribution of bacterial reaction centers underlies the temperature and detection-wavelength dependence of the rates of the primary electron-transfer reactions. Proc. Natl. Acad. Sci. U.S.A. 87, 3552–3556 (1990)

    Article  ADS  Google Scholar 

  11. Takahashi, E., Wraight, C.A.: Proton and electron-transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers – characterization of site-directed mutants of the 2 ionizable residues, GLUL212 and ASPL213, in the QB binding-site. Biochemistry 31, 855–866 (1992)

    Article  Google Scholar 

  12. Shuvalov, V.A., Duysens, L.N.M.: Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. U.S.A. 83, 1690–1694 (1986)

    Article  ADS  Google Scholar 

  13. Gehlen, J.N., Marchi, M., Chandler, D.: Dynamics affecting the primary charge transfer in photosynthesis. Science 263, 499–502 (1994)

    Article  ADS  Google Scholar 

  14. Müller, M.G., Drews, G., Holzwarth, A.: Primary charge separation processes in reaction centers of an antenna-free mutant of Rhodobacter capsulatus. Chem. Phys. Lett. 258, 194–202 (1996)

    Article  Google Scholar 

  15. Marchi, M., Gehlen, J.N., Chandler, D., Newton, M.: Diabatic surfaces and the pathway for primary electron transfer in a photosynthetic reaction center. J. Am. Chem. Soc. 115, 4178–4190 (1993)

    Article  Google Scholar 

  16. Tanaka, S., Marcus, R.A.: Electron transfer model for the electric field effect on quantum yield of charge separation in bacterial photosynthetic reaction centers. J. Phys. Chem. B 101, 5031–5045 (1997)

    Article  Google Scholar 

  17. Bixon, M., Jortner, J., Michel-Beyerle, M.E.: A kinetic analysis of the primary charge separation in bacterial photosynthesis. Energy gaps and static heterogeneity. Chem. Phys. 197, 389–404 (1995)

    Google Scholar 

  18. Müller, M.G., Griebenow, K., Holzwarth, A.R.: Primary processes in isolated photosynthetic bacterial reaction centers from Chloroflexus aurantiacus studied by picosecond fluorescence spectroscopy. Biochim. Biophys. Acta 1098, 1–12 (1991)

    Article  Google Scholar 

  19. Capek, V., Szocs, V.: Is the sink model of exciton trapping in molecular condensates satisfactory? Phys. Status Solidi, B 125, K137–K142 (1984)

    Article  ADS  Google Scholar 

  20. Sparpaglione, M., Mukamel, S.: Dielectric friction and the transition from adiabatic to nonadiabatic electron transfer. I. Solvation dynamics in Liouville space. J. Chem. Phys. 88, 3263–3280 (1988)

    Article  ADS  Google Scholar 

  21. Zwanzig, R.: On the identity of three generalized master equations. Physica 30, 1109–1123 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  22. Shibata, F., Takashi, Y., Hashitsume, N.: A generalized Stochastic Liouville equation. Non-Markovian versus memoryless master equations. J. Stat. Phys. 17, 171–187 (1977)

    Article  ADS  Google Scholar 

  23. Pudlak, M.: Primary charge separation in the bacterial reaction center: validity of incoherent sequential model. J. Chem. Phys. 118, 1876–1882 (2003)

    Article  ADS  Google Scholar 

  24. Marcus, R.A.: An internal consistency test and its implications for the initial steps in bacterial photosynthesis. Chem. Phys. Lett. 146, 13–22 (1988)

    Article  ADS  Google Scholar 

  25. Jortner, J.: Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64, 4860–4867 (1976)

    Article  ADS  Google Scholar 

  26. Pudlak, M., Pincak, R.: Modeling charge transfer in the photosynthetic reaction center. Phys. Rev. E 68, 061901–7 (2003)

    Article  ADS  Google Scholar 

  27. Katilius, E., Turanchik, T., Lin, S., Taguchi, A.K.W., Woodbury, N.W.: B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin. J. Phys. Chem. B 103, 7386–7389 (1999)

    Article  Google Scholar 

  28. Katilius, E., Katiliene, Z., Lin, S., Taguchi, A.K.W., Woodbury, N.W.: B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin: low-temperature study and energetics of charge-separated states. J. Phys. Chem. B 106, 1471–1475 (2002)

    Article  Google Scholar 

  29. Pudlak, M.: Electron transfer driven by conformational variations. J. Chem. Phys. 108, 5621–5625 (1998)

    Article  ADS  Google Scholar 

  30. Kirmaier, Ch., He, Ch., Holten, D.: Manipulating the direction of electron transfer in the bacterial photosynthetic reaction center by swapping Phe for Tyr near BChlM (L181) and Tyr for Phe near BChlL (M208). Biochemistry 40, 12132–12139 (2001)

    Article  Google Scholar 

  31. Michel-Beyerle, M.E., Plato, M., Deisenhofer, J., Michel, H., Bixon, M., Jortner, J.: Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim. Biophys. Acta 932, 52–70 (1988)

    Article  Google Scholar 

  32. Pincak, R., Pudlak, M.: Noise breaking the twofold symmetry of photosynthetic reaction centers: electron transfer. Phys. Rev. E 64, 031906–10 (2001)

    Article  ADS  Google Scholar 

  33. Plato, M., Möbius, K., Michel-Beyerle, M.E., Bixon, M.: Intermolecular electronic interactions in the primary charge separation in bacterial photosynthesis. J. Am. Chem. Soc. 110, 7279–7285 (1988)

    Article  Google Scholar 

  34. Pudlak, M., Pincak, R.: The role of accessory bacteriochlorophylls in the primary charge transfer in the photosynthetic reaction center. Chem. Phys. Lett. 342, 587–592 (2001)

    Article  ADS  Google Scholar 

  35. Parson, W.W., Chu, Z.T., Warshel, A.: Electrostatic control of charge separation in bacterial photosynthesis. Biochim. Biophys. Acta 1017, 251–272 (1990)

    Article  Google Scholar 

  36. Yamasaki, H., Nakamura, H., Takano, Y.: Theoretical analysis of the electronic asymmetry of the special pair in the photosynthetic reaction center: effect of structural asymmetry and protein environment. Chem. Phys. Lett. 447, 324–329 (2007)

    Article  ADS  Google Scholar 

  37. Kirmaier, C., Weems, D., Holten, D.: M-side electron transfer in reaction center mutants with a lysine near the non-photoactive bacteriochlorophyll. Biochemistry 38, 11516–11530 (1999)

    Article  Google Scholar 

  38. Haffa, A.L.M., Lin, S., Williams, J.A.C., Bowen, B., Taguchi, A.K.W., Allen, J.P., Woodbury, N.: Controlling the pathway of photosynthetic charge separation in bacterial reaction centers. J. Phys. Chem. B 108, 4–7 (2004)

    Article  Google Scholar 

  39. Parson, W.W., Warshel, A.: A density matrix model of photosynthetic electron transfer with microscopically based estimated vibrational relaxation times. Chem. Phys. 296, 201–216 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Slovak Academy of Sciences under the CEX NANOFLUID and VEGA grant 2/7056/27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Pincak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pudlak, M., Pincak, R. Electronic pathway in reaction centers from Rhodobacter sphaeroides and Chloroflexus aurantiacus . J Biol Phys 36, 273–289 (2010). https://doi.org/10.1007/s10867-009-9183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9183-7

Keywords

Navigation