Skip to main content
Log in

Impact of Nonlinear Delayed Feedback on Synchronized Oscillators

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We show that synchronization processes can effectively be controlled with nonlinear delayed feedback. We demonstrate that nonlinear delayed feedback can have a twofold impact on the collective dynamics of large ensembles of coupled oscillators: synchronizing and, mostly, desynchronizing effects. By means of a model equation for the mean field, we explore the existence and stability of the feedback-induced desynchronized states, their multistability and dynamical properties. We propose nonlinear delayed feedback stimulation for the therapy of neurological diseases characterized by abnormal synchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haken, H.: Advanced Synergetics. Springer, Berlin (1983)

    MATH  Google Scholar 

  2. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization, a Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  4. Winfree, A.T.: The Geometry of Biological Time. Springer, Berlin (1980)

    MATH  Google Scholar 

  5. Steriade, M., Jones, E.G., Llinas, R.R.: Thalamic Oscillations and Signaling. Wiley, New York (1990)

    Google Scholar 

  6. Tass, P.A.: Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  7. Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995)

    Article  Google Scholar 

  8. Alberts, W.W., Wright, E.J., Feinstein, B.: Cortical potentials and parkinsonian tremor. Nature 221, 670–672 (1969)

    Article  ADS  Google Scholar 

  9. Pare, D., Curro’Dossi, R., Steriade, M.: Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neurosci. 35, 217–226 (1990)

    Article  Google Scholar 

  10. Tass, P.A., Rosenblum, M.G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J.: Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81, 3291–3294 (1998)

    Article  ADS  Google Scholar 

  11. Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H.-J., Schnitzler, A.: The cerebral oscillatory network of Parkinsonian resting tremor. Brain 126, 199–212 (2003)

    Article  Google Scholar 

  12. Levy, R., Ashby, P., Hutchison, W.D., Lang, A.E., Lozano, A.M., Dostrovsky, J.O.: Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125, 1196–1209 (2002)

    Article  Google Scholar 

  13. Smirnov, D., Barnikol, U., Bezruchko, T.B.B., Hauptmann, C., Bührle, C., Maarouf, M., Sturm, V., Freund, H.-J., Tass, P.: The generation of Parkinsonian tremor as revealed by directional coupling analysis. Europhys. Lett. (2008, in press)

  14. Benabid, A.L., Pollak, P., Louveau, A., Henry, S., de Rougemont, J.: Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson’s disease. Appl. Neurophysiol. 50, 344–346 (1987)

    Google Scholar 

  15. Benabid, A.L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D.M., Hommel, M., Perret, J.E., de Rougemount, J.: Longterm suppression of tremor by chronic stimulation of ventral intermediate thalamic nucleus. Lancet 337, 403–406 (1991)

    Article  Google Scholar 

  16. Rodriguez-Oroz, M.C., et al.: Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(10), 2240–2249 (2005)

    Article  Google Scholar 

  17. Nini, A., Feingold, A., Slovin, H., Bergmann, H.: Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74, 1800–1805 (1995)

    Google Scholar 

  18. Tass, P.A.: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88 (2003)

    Article  MATH  Google Scholar 

  19. Tass, P.A., Majtanik, M.: Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol. Cybern. 94(1), 58–66 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tass, P.A., Hauptmann, C., Popovych, O.V.: Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics. Int. J. Bifurc. Chaos 16(7), 1889–1911 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Popovych, O.V., Hauptmann, C., Tass, P.A.: Effective desynchronization by nonlinear delayed feedback. Phys. Rev. Lett. 94, 164102 (2005)

    Article  ADS  Google Scholar 

  22. Popovych, O.V., Hauptmann, C., Tass, P.A.: Control of neuronal synchrony by nonlinear delayed feedback. Biol. Cybern. 95, 69–85 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    MATH  Google Scholar 

  24. Matthews, P.C., Strogatz, S.H.: Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 65, 1701–1704 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Daido, H.: Order function theory of macroscopic phase-locking in globally and weakly coupled limit-cycle oscillators. Int. J. Bifurc. Chaos 7(4), 807–829 (1997)

    Article  MATH  Google Scholar 

  26. Popovych, O.V., Krachkovskyi, V., Tass, P.A.: Twofold impact of delayed feedback on coupled oscillators. Int. J. Bifurc. Chaos 17(7), 2517–2530 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bellman, R., Cooke, K.L.: Differential-difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  28. Tass, P.A.: Effective desynchronization with a resetting pulse train followed by a single pulse. Europhys. Lett. 55, 171–177 (2001)

    Article  ADS  Google Scholar 

  29. Rosenblum, M.G., Pikovsky, A.S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92, 114102 (2004)

    Article  ADS  Google Scholar 

  30. Hauptmann, C., Popovych, O., Tass, P.A.: Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65–66, 759–767 (2005)

    Article  Google Scholar 

  31. Hauptmann, C., Popovych, O., Tass, P.A.: Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biol. Cybern. 93, 463–470 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by the Network of Excellence in Biosimulation (BioSim LSHB-CT-20004-005137) and by AiF (grant no. KF 0251802KWD2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Popovych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovych, O.V., Hauptmann, C. & Tass, P.A. Impact of Nonlinear Delayed Feedback on Synchronized Oscillators. J Biol Phys 34, 267–279 (2008). https://doi.org/10.1007/s10867-008-9068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9068-1

Keywords

Navigation