Skip to main content
Log in

Coil-globule Coexistence and Compaction of DNA Chains

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this work we discuss different factors governing coil-globule coexistence in the compaction process of DNA. We initially analyse the role played by fluctuations in the degree of binding of an external compacting agent in the conformational behavior of the chain backbone. The analysis relies both on Monte Carlo simulation results and simple statistical approaches. Compacting agents of various binding characteristics are taken into consideration and the degree of charge neutralization upon the chain is related to conformational indicators. Selected model systems comprising stiff chains in the presence of multivalent ions are employed to assess intrinsic single-chain conformational fluctuation, in the presence of external agents but not resulting from differences in binding. It is shown that trends found for a variety of compacting agents, including the extension of the coil-globule coexistence regions, can be ratio-nalised on the basis of this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minagawa, K., Matsuzawa, Y., Yoshikawa, K., Matsumoto, M., Doi, M.: Direct observation of the biphasic conformational change of DNA induced by cationic polymers. FEBS Lett. 295, 67–69 (1991)

    Article  Google Scholar 

  2. Takahashi, M., Yoshikawa, K., Vasilevskaya, V.V., Khokhlov, A.R.: Discrete coil-globule transition of single duplex DNAs induced by polyamines. J. Phys. Chem., B. 101, 9396–9401 (1997)

    Article  Google Scholar 

  3. Khan, M.O., Mel’nikov S.M., Jönsson B.: Anomalous salt effect on DNA conformation: Experiment and theory. Macromolecules 32, 8836–8840 (1999)

    Article  Google Scholar 

  4. Mel’nikov S.M., Sergeyev V.G., Yoshikawa K.: Visualization of DNA-surfactant interaction with fluorescence microscopy. Recent Res. Devel. in Chemical Sciences 1, 69–113 (1997)

    Google Scholar 

  5. Dias, R., Mel’nikov S., Lindman B., Miguel M.G.: DNA phase behavior in the presence of oppositely charged surfactants. Langmuir 16, 9577–9583 (2000)

    Google Scholar 

  6. Mel’nikov S.M., Dias R., Mel’nikova Y.S., Marques E.F., Miguel M.G., Lindman B.: DNA conformational dynamics in the presence of catanionic mixtures. FEBS Lett. 453, 113–118 (1999)

    Google Scholar 

  7. Yamasaki, Y., Yoshikawa, K.: Higher order structure of DNA controlled by the redox state of Fe2+/Fe3+. J. Am. Chem. Soc. 119, 10573–10578 (1997)

    Article  Google Scholar 

  8. Yoshikawa, K., Kidoaki, S., Takahashi, M., Vasilevskaya, V.V., Khokhlov, A.R.: Marked discreteness on the coil-globule transition of a single duplex DNA. Ber. Bunsenges. Phys. Chem. 100, 876–880 (1996)

    Google Scholar 

  9. Raspaud, E., de la Cruz M.O., Sikorav, J.L., Livolant, F.: Precipitation of DNA by polyamines: a polyelectrolyte behavior. Biophys. J. 74, 381–393 (1998)

    Google Scholar 

  10. Sarraguça J.M.G., Skepö M., Pais A.A.C.C., Linse P.: Structure of polyelectrolytes in 3:1 salt solutions. J. Chem. Phys. 119, 12621–12628 (2003)

    Google Scholar 

  11. Guldbrand, L., Jönsson, B., Wennerström, H., Linse, P.: Electric double layer forces. A Monte Carlo study. J. Phys. Chem. 88, 2221–2226 (1984)

    Google Scholar 

  12. Mel’nikov S.M., Khan M.O., Lindman B., Jonsson B.: Phase behavior of single DNA in mixed solvents. J. Am. Chem. Soc. 121, 1130–1135 (1999)

    Google Scholar 

  13. Solis, F.J., de la Cruz O.: Collapse of flexible polyelectrolytes in multivalent salt solutions. J. Chem. Phys. 112, 2030–2035 (2000)

    Article  ADS  Google Scholar 

  14. Stevens, M.J.: Simple simulations of DNA condensation. Biophys. J. 80, 130–139 (2001)

    Google Scholar 

  15. Liu, S., Muthukumar, M.: Langevin dynamics simulation of counterion distribution around isolated flexible polyelectrolyte chains. J. Chem. Phys. 116, 9975–9982 (2002)

    Article  ADS  Google Scholar 

  16. Sarraguça J.M.G., Pais A.A.C.C.: Simulation of polyelectrolyte solutions. The density of bound ions. Chem. Phys. Lett. 398, 140–145 (2004)

    Article  ADS  Google Scholar 

  17. Tan Z.J., Chen S.J.: Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J. Chem. Phys. 122, 044903 (2005)

    Article  ADS  Google Scholar 

  18. Klos J., Pakula T.: Monte Carlo simulations of a polyelectrolyte chain with added salt: effect of temperature and salt valence. J. Chem. Phys. 123, 024903 (2005)

    Article  ADS  Google Scholar 

  19. Khan, M.O., Chan, D.Y.: Effect of chain stiffness on polyelectrolyte condensation. Macromolecules 38, 3017–3025 (2005)

    Article  Google Scholar 

  20. Srivastava, D., Muthukumar, M.: Interpenetration of interacting polyelectrolytes. Macromolecules 27, 1461–1465 (1994)

    Article  Google Scholar 

  21. Dias R.S., Pais A.A.C.C., Lindman B., Miguel M.G.: Modeling of DNA compaction by polycations. J. Chem. Phys. 119, 8150–8157 (2003) (Also published in the October 15, 2003 issue of Virtual Journal of Biological Physics Research.)

    Google Scholar 

  22. Winkler R.G., Steinhauser M.O., Reineker P.: Complex formation in systems of oppositely charged polyelectrolytes: a molecular dynamics simulation study. Phys. Rev., E 66, 021802 (2002) (8 pages)

    Google Scholar 

  23. Hayashi, Y., Ullner, M., Linse, P.: A Monte Carlo study of solutions of oppositely charged polyelectrolytes. J. Chem. Phys. 116, 6836–6845 (2002)

    Article  ADS  Google Scholar 

  24. Hayashi, Y., Ullner, M., Linse, P.: Complex formation in solutions of oppositely charged polyelectrolytes at different polyion compositions and salt content. J. Phys. Chem., B. 107, 8198–8207 (2003)

    Article  Google Scholar 

  25. Pais, A.A.C.C., Miguel, M.G., Linse, P., Lindman, B.: Polyelectrolytes confined to spherical cavities. J. Chem. Phys. 117, 1385–1394 (2002)

    Article  ADS  Google Scholar 

  26. Ubbink, J., Odijk, T.: Polymer- and salt-induced toroids of hexagonal DNA. Biophys. J. 68, 54–61 (1995)

    Google Scholar 

  27. Bloomfield, V.A.: Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers 31, 1471–1481 (1991)

    Article  Google Scholar 

  28. Frisch, H.L., Fesciyan, S.: DNA phase transitions: The phi transition of single coils. J. Polym. Sci., Polym. Lett. Ed. 17, 309–315 (1979)

    Article  Google Scholar 

  29. Post, C.B., Zimm, B.H.: Internal condensation of a single DNA molecule. Biopolymers 18, 1487–1501 (1979)

    Article  Google Scholar 

  30. Grosberg, A.Y.: Certain possible conformational states of a uniform elastic polymer. Biophysics 24, 30–36 (1979)

    Google Scholar 

  31. Yoshikawa, K., Takahashi, M., Vasilevskaya, V.V., Khokhlov, A.R.: Large discrete transition in a single DNA molecule appears continuous in the ensemble. Phys. Rev. Lett. 76, 3029–3031 (1996)

    Article  ADS  Google Scholar 

  32. Noguchi, H., Yoshikawa, K.: First-order phase transition in a stiff polymer chain. Chem. Phys. Lett. 278, 184–188 (1997)

    Article  ADS  Google Scholar 

  33. Kramarenko, E.Y., Khokhlov, A.R., Yoshikawa, K.: Collapse of polyelectrolyte macromolecules revisited. Macromolecules 30, 3383–3388 (1997)

    Article  Google Scholar 

  34. Vasilevskaya, V.V., Khokhlov, A.R., Yoshikawa, K.: Single polyelectrolyte nacromolecule in the salt solution: Effect of escaped counter ions. Macromol. Theory Simul. 9, 600–607 (2000)

    Article  Google Scholar 

  35. Takagi, S., Tsumoto, K.: Intra-molecular phase segregation in a single polyelectrolyte chain. J. Chem. Phys. 114, 6942–6949 (2001)

    Article  ADS  Google Scholar 

  36. Bloomfield, V.A.: DNA condensation by multivalent ions. Biopolymers 44, 269–282 (1998)

    Article  Google Scholar 

  37. Vilfan, I.D., Conwell, C.C., Sarkar, T., Hud, N.V.: Time study of DNA condensate morphology: implications regarding the nucleation, growth and equilibrium populations of toroids and rods. Biochemistry 45, 8174–8183 (2006)

    Article  Google Scholar 

  38. Linse P.: MOLSIM, Version 3.3.2. Lund University, Sweden (2002)

    Google Scholar 

  39. Gordon, H.L., Valleau, J.P.: A ‘partially clothed’ pivot algorithm for model polyelectrolyte solutions. Mol. Simul. 14, 361–379 (1995)

    Article  Google Scholar 

  40. Almeida J.A.S., Barbosa L.M.S., Pais A.A.C.C., Formosinho S.J.: Improving hierarchical analysis. (2006) (submitted)

  41. Bloomfield, V.A.: DNA condensation by multivalent ions. Biopolymers 44, 10573–10578 (1997)

    Article  Google Scholar 

  42. Sarraguça J.M.G., Pais A.A.C.C.: Polyelectrolytes in solutions with multivalent salt. Effects of flexibility and contour length. Phys. Chem. Chem. Phys. 8(36), 4233–4241 (2006)

    Article  Google Scholar 

  43. Holmberg K., Jönsson B., Kronberg B., Lindman B.: Surfactants and Polymers in Aqueous Solution, 2nd edn. Wiley, Chichester, UK (2003)

    Google Scholar 

  44. Park, S.Y., Harries, D., Gelbart, W.M.: Topological defects and the optimum size of DNA condensates. Biophys. J. 75, 714–720 (1998)

    Article  Google Scholar 

  45. Dias, R.S., Innerlohninger, J., Glatter, O., Miguel, M.G., Lindman, B.: Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study. J. Phys. Chem., B 109, 10458–10463 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. C. C. Pais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarraguça, J.M.G., Dias, R.S. & Pais, A.A.C.C. Coil-globule Coexistence and Compaction of DNA Chains. J Biol Phys 32, 421–434 (2006). https://doi.org/10.1007/s10867-006-9026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9026-8

Key words

Navigation