Skip to main content
Log in

The active transport of histidine and its role in ATP production in Trypanosoma cruzi

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Trypanosoma cruzi, the aetiological agent of Chagas’s disease, metabolizes glucose, and after its exhaustion, degrades amino acids as energy source. Here, we investigate histidine uptake and its participation in energy metabolism. No putative genes for the histidine biosynthetic pathway have been identified in genome databases of T. cruzi, suggesting that its uptake from extracellular medium is a requirement for the viability of the parasite. From this assumption, we characterized the uptake of histidine in T. cruzi, showing that this amino acid is incorporated through a single and saturable active system. We also show that histidine can be completely oxidised to CO2. This finding, together with the fact that genes encoding the putative enzymes for the histidine - glutamate degradation pathway were annotated, led us to infer its participation in the energy metabolism of the parasite. Here, we show that His is capable of restoring cell viability after long-term starvation. We confirm that as an energy source, His provides electrons to the electron transport chain, maintaining mitochondrial inner membrane potential and O2 consumption in a very efficient manner. Additionally, ATP biosynthesis from oxidative phosphorylation was found when His was the only oxidisable metabolite present, showing that this amino acid is involved in bioenergetics and parasite persistence within its invertebrate host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antunes LC, Han J, Pan J, Moreira CJ, Azambuja P, Borchers CH, Carels N (2013) Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics. PLoS One 8:e77283

    Article  CAS  Google Scholar 

  • Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL (2005) The Trypanosoma cruzi proteome. Science 309:473–476

    Article  CAS  Google Scholar 

  • Barrett FM, Friend WG (1975) Differences in the concentration of free amino acids in the haemolymph of adult male and female Rhodnius prolixus. Comp Biochem Physiol B 52:427–431

    CAS  Google Scholar 

  • Brand v (1979) Biochemistry and Physiology of Endoparasites. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Brener Z (1973) Biology of Trypanosoma cruzi. Annu Rev Microbiol 27:347–382

    Article  CAS  Google Scholar 

  • Brener Z, Chiari E (1963) Morphological Variations Observed in Different Strains of Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 5:220–224

    CAS  Google Scholar 

  • Camargo EP (1964) Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop São Paulo 6:93–100

    CAS  Google Scholar 

  • Canepa GE, Silber AM, Bouvier LA, Pereira CA (2004) Biochemical characterization of a low-affinity arginine permease from the parasite Trypanosoma cruzi. FEMS Microbiol Lett 236:79–84

    Article  CAS  Google Scholar 

  • Canepa GE, Bouvier LA, Urias U, Miranda MR, Colli W, Alves MJ, Pereira CA (2005) Aspartate transport and metabolism in the protozoan parasite Trypanosoma cruzi. FEMS Microbiol Lett 247:65–71

    Article  CAS  Google Scholar 

  • Canepa GE, Bouvier LA, Miranda MR, Uttaro AD, Pereira CA (2009) Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiol Lett 292:27–32

    Article  CAS  Google Scholar 

  • Cannata JJ, Cazzulo JJ (1984) The aerobic fermentation of glucose by Trypanosoma cruzi. Comp Biochem Physiol B 79:297–308

    Article  CAS  Google Scholar 

  • Cazzulo JJ (1994) Intermediate metabolism in Trypanosoma cruzi. J Bioenerg Biomembr 26:157–165

    Article  CAS  Google Scholar 

  • Cazzulo JJ, Franke de Cazzulo BM, Engel JC, Cannata JJ (1985) End products and enzyme levels of aerobic glucose fermentation in trypanosomatids. Mol Biochem Parasitol 16:329–343

    Article  CAS  Google Scholar 

  • Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16:315–327

    Article  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  CAS  Google Scholar 

  • Engel JC, Franke de Cazzulo BM, Stoppani AO, Cannata JJ, Cazzulo JJ (1987) Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes. Mol Biochem Parasitol 26:1–10

    Article  CAS  Google Scholar 

  • Galvez Rojas RL, Ahn IY, Suarez Mantilla B, Sant’Anna C, Pral EM, Silber AM (2015) The Uptake of GABA in Trypanosoma cruzi. J Eukaryot Microbiol 62:629–636

    Article  CAS  Google Scholar 

  • Hampton JR (1970) Lysine uptake in cultured Trypanosoma cruzi: interactions of competitive inhibitors. J Protozool 17:597–600

    Article  CAS  Google Scholar 

  • Harington JS (1961a) Studies of the amino acids of Rhodnius prolixus I. Analysis of the haemolymph Parasitology 51:309–318

    Article  CAS  Google Scholar 

  • Harington JS (1961b) Studies of the amino acids of Rhodnius prolixus II. Analysis of the excretory material Parasitology 51:319–326

    Article  CAS  Google Scholar 

  • Inbar E, Canepa GE, Carrillo C, Glaser F, Suter Grotemeyer M, Rentsch D, Zilberstein D, Pereira CA (2012) Lysine transporters in human trypanosomatid pathogens. Amino Acids 42:347–360

    Article  CAS  Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in triatominae. Parasitol Today 16:381–387

    Article  CAS  Google Scholar 

  • Magdaleno A, Ahn IY, Paes LS, Silber AM (2009) Actions of a proline analogue, L-thiazolidine-4-carboxylic acid (T4C), on Trypanosoma cruzi. PLoS One 4:e4534

    Article  Google Scholar 

  • Manchola NC, Rapado LN, Barison MJ, Silber AM (2015) Biochemical characterization of branched chain amino acids uptake in Trypanosoma cruzi. J Eukaryot Microbiol.

    Google Scholar 

  • Mancilla R, Naquira C, Lanas C (1967) Protein biosynthesis in trypanosomidae. II. The metabolic fate of DL-leucine-1-C14 in Trypanosoma cruzi. Exp Parasitol 21:154–159

    Article  CAS  Google Scholar 

  • Mantilla BS, Paes LS, Pral EM, Martil DE, Thiemann OH, Fernandez-Silva P, Bastos EL, Silber AM (2015) Role of Delta1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J Biol Chem 290:7767–7790

    Article  CAS  Google Scholar 

  • Martins RM, Covarrubias C, Rojas RG, Silber AM, Yoshida N (2009) Use of L-proline and ATP production by Trypanosoma cruzi metacyclic forms as requirements for host cell invasion. Infect Immun 77:3023–3032

    Article  CAS  Google Scholar 

  • Minning TA, Weatherly DB, Atwood J 3rd, Orlando R, Tarleton RL (2009) The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics 10:370

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Paes LS, Suarez Mantilla B, Zimbres FM, Pral EM, Diogo de Melo P, Tahara EB, Kowaltowski AJ, Elias MC, Silber AM (2013) Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS One 8:e69419

    Article  CAS  Google Scholar 

  • Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL (2015) CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio 6:e02097–e02014

    CAS  Google Scholar 

  • Pereira CA, Alonso GD, Paveto MC, Flawia MM, Torres HN (1999) L-arginine uptake and L-phosphoarginine synthesis in Trypanosoma cruzi. J Eukaryot Microbiol 46:566–570

    Article  CAS  Google Scholar 

  • Saye M, Miranda MR, di Girolamo F, de los Milagros Camara M, CA P (2014) Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter. PLoS One 9:e92028

    Article  Google Scholar 

  • Silber AM, Tonelli RR, Martinelli M, Colli W, Alves MJ (2002) Active transport of L-proline in Trypanosoma cruzi. J Eukaryot Microbiol 49:441–446

    Article  CAS  Google Scholar 

  • Silber AM, Rojas RL, Urias U, Colli W, Alves MJ (2006) Biochemical characterization of the glutamate transport in Trypanosoma cruzi. Int J Parasitol 36:157–163

    Article  CAS  Google Scholar 

  • Silva Paes L, Suarez Mantilla B, Julia Barison M, Wrenger C, Mariano Silber A (2011) The uniqueness of the Trypanosoma cruzi mitochondrion: opportunities to target new drugs against Chagas disease. Curr Pharm Des 17:2074–2099

    Article  Google Scholar 

  • Sylvester D, Krassner SM (1976) Proline metabolism in Trypanosoma cruzi epimastigotes. Comp Biochem Physiol B 55:443–447

    CAS  Google Scholar 

  • Teixeira MM, Yoshida N (1986) Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol 18:271–282

    Article  CAS  Google Scholar 

  • Tetaud E, Bringaud F, Chabas S, Barrett MP, Baltz T (1994) Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Proc Natl Acad Sci U S A 91:8278–8282

    Article  CAS  Google Scholar 

  • Tonelli RR, Silber AM, Almeida-de-Faria M, Hirata IY, Colli W, Alves MJ (2004) L-proline is essential for the intracellular differentiation of Trypanosoma cruzi. Cell Microbiol 6:733–741

    Article  CAS  Google Scholar 

  • Vickery HB (1942) The histidine content of the hemoglobin of man and of the horse and sheep, determined with the aid of 3,4-dichlorobenzenesulfonic acid. J Biol Chem 144:719–730

    CAS  Google Scholar 

  • WHO (2015) Chagas Disease (American trypanosomiasis)

  • Zeledon R (1960) Comparative physiological studies on four species of hemoflagellates in culture. II Effect of carbohydrates and related substances and some amino compounds on the respiration J Parasitol 46:541–551

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant #2013/18970-6 to AMS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant #2013/18970-6 and #308351/2013-4 to AMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Silber.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Author contribution statement

All authors made major intellectual contributions to this work and participated in the planning, conception and interpretation of the results. MJB, FSD and BSM conducted the experimental work. MJB and AMS wrote the article. AMS was responsible for funding the experimental work.

Electronic Supplementary Material

Fig. S1

Effect of digitonin permeabilisation on respiratory rates. a. Oxygen consumption in exponential growing cells (LIT medium culture) stimulated with 5 mM His (gray) or 5 mM Pro (black). The dashed lines indicate the variation in oxygen concentration as a function of time (right axis). The solid lines represent O2 concentration (left axis). Dig: digitonin (50 μM); ADP (250 μM); Olig: oligomycin A (0.5 μg/ml); FCCP (0.5 μM). (JPEG 594 kb)

High Resolution Image (TIFF 571 kb)

ESM 1

(DOCX 11.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barisón, M.J., Damasceno, F.S., Mantilla, B.S. et al. The active transport of histidine and its role in ATP production in Trypanosoma cruzi . J Bioenerg Biomembr 48, 437–449 (2016). https://doi.org/10.1007/s10863-016-9665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9665-9

Keywords

Navigation