Skip to main content
Log in

Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Ethanol is one of the most efficient carbon sources for Euglena gracilis. Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64–6.5 mM for ethanol, and 0.16–0.88 mM for NAD+, while the ALDH Km values were 1.7–5.3 μM for acetaldehyde and 33–47 μM for NAD+. These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilés C, Loza-Tavera H, Terry N, Moreno-Sánchez R (2003) Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis. Arch Microbiol 180:1–10

    Article  Google Scholar 

  • Bakker BM, Bro C, Kötter P, Luttik MAH, Van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    Article  CAS  Google Scholar 

  • Barsanti I, Vismara R, Passarelli V, Gualtieri P (2001) Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J Appl Phycol 13:59–65

    Article  CAS  Google Scholar 

  • Bégin-Heick N (1973) The localization of enzymes of intermediary metabolism in Astasia and Euglena. Biochem J 134:607–616

    Google Scholar 

  • Bergmeyer HU (1983) In: Bergmeyer HU (ed) Methods of enzymatic analysis, vols. 3–9. Weinheim Verlag Chemie, Germany

    Google Scholar 

  • Cervantes C, Espino-Saldaña AE, Acevedo-Aguilar F, León-Rodríguez IL, Rivera-Cano ME, Avila-Rodríguez M, Wróbel-Kaczmarczyk K, Wroóbel-Zasada K, Gutiérrez-Corona JE, Rodríguez-Zavala JS, Moreno-Sánchez R (2006) Microbial interactions with heavy metals. Rev Latinoam Microbiol 48:203–210

    CAS  Google Scholar 

  • Coleman LW, Rosen BH, Schwartzbach SD (1988) Environmental control of carbohydrate and lipid synthesis in Euglena. Plant Cell Physiol 29:423–432

    CAS  Google Scholar 

  • Crow KE, Kitson TM, MacGibbon AKH, Batt RD (1974) Intracellular localisation and properties of aldehyde dehydrogenases from sheep liver. Biochim Biophys Acta 350:121–128

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW 3rd (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  CAS  Google Scholar 

  • Devars S, Hernández R, Moreno-Sánchez R (1998) Enhanced heavy metal tolerance in Euglena gracilis by preexposure to mercury or cadmium. Arch Environ Contam Toxicol 34:128–135

    Article  CAS  Google Scholar 

  • Devars S, Rodríguez-Zavala JS, Moreno-Sánchez R (2011) Enhanced tolerance to mercury in a streptomycin-resistant strain of Euglena gracilis. Water Air Soil Pollut 216:51–57

    Article  CAS  Google Scholar 

  • Fruehauf JP, Bonnard GD, Herberman RB (1983) The effect of lentinan on production of interleukin-1 by human monocytes. Immunopharmacology 5:65–74

    Article  Google Scholar 

  • Fujita T, Aoyagi H, Ogbonna JC, Tanaka H (2008) Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl Microbiol Biotechnol 79:371–378

    Article  CAS  Google Scholar 

  • Fukaya FM, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y, Beppu T (1989) Cloning of the membrane-bound aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl Environ Microbiol 55:171–176

    CAS  Google Scholar 

  • García-García JD, Rodríguez-Zavala JS, Jasso-Chávez R, Mendoza-Cózatl D, Moreno-Sánchez R (2009) Chromium uptake, retention and reduction in photosynthetic Euglena gracilis. Arch Microbiol 191:431–440

    Article  Google Scholar 

  • Gómez-Manzo S, Chávez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguín-Espinosa R, Pérez de la Mora M, Membrillo-Hernández J, Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192:5718–5724

    Article  Google Scholar 

  • Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80

    Article  CAS  Google Scholar 

  • Gornal AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the Biuret reaction. J Biol Chem 77:751–766

    Google Scholar 

  • Henehan GT, Ward K, Kennedy NP, Weir DG, Tipton KF (1985) Subcellular distribution of aldehyde dehydrogenase activities in human liver. Alcohol 2:107–110

    Article  CAS  Google Scholar 

  • Hurlbert RE, Rittenberg SC (1962) Glucose metabolism of Euglena gracilis var. bacillaris; growth and enzymatic studies. J Protozool 9:170–182

    CAS  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1982) Wax ester fermentation in Euglena gracilis. FEBS Lett 150:89–93

    Article  CAS  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1984) Occurrence of oxygen-sensitive, NADP+–dependent pyruvate dehydrogenase in mitochondria of Euglena gracilis. J Biochem 96:931–934

    CAS  Google Scholar 

  • Inui H, Ohya O, Miyatake K, Nakano Y, Kitaoka S (1986) Assimilation and metabolism of fatty alcohols in Euglena gracilis. Biochim Biophys Acta 875:543–548

    CAS  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1992) Synthesis of reserved polysaccharide from wax esters accumulated as the result of anaerobic energy generation in Euglena gracilis returned from anaerobic to aerobic conditions. Int J Biochem 24:799–803

    Article  CAS  Google Scholar 

  • Jasso-Chávez R, Moreno-Sánchez R (2003) Cytosol–mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena. Eur J Biochem 270:4942–4951

    Article  Google Scholar 

  • Jasso-Chávez R, Torres-Márquez ME, Moreno-Sánchez R (2001) The membrane-bound L- and D-lactate dehydrogenase activities in mitochondria from Euglena gracilis. Arch Biochem Biophys 390:295–303

    Article  Google Scholar 

  • Jasso-Chávez R, García-Cano I, Marín-Hernández A, Mendoza-Cózatl D, Rendon JL, Moreno-Sánchez R (2005) The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis. Biochim Biophys Acta 1709:181–190

    Article  Google Scholar 

  • Ju J, Picinich SC, Yang Z, Zhao Y, Suh N, Kong A-N, Yang CS (2010) Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis 31(533–542):2010

    Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  CAS  Google Scholar 

  • Kataoka K, Muta T, Yamazaki S, Takeshige K (2002) Activation of macrophages by linear (1right-arrow3)-beta- D-glucans. Implications for the recognition of fungi by innate immunity. J Biol Chem 277:36825–36831

    Article  CAS  Google Scholar 

  • Kay CWM, Mennenga B, Görisch H, Bittl R (2004) Characterisation of the PQQ cofactor radical in quinoprotein ethanol. FEBS Lett 564:69–72

    Article  CAS  Google Scholar 

  • Kirch HH, Bartels D, Wei Y, Schnable PS, Wood AJ (2004) The ALDH gene superfamily of Arabidopsis. Trends Plant Sci 9:371–377

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1970) Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry 9:1095–1102

    Article  CAS  Google Scholar 

  • Lertwattanasakul N, Shigemoto E, Rodrussamee N, Limtong S, Thanonkeo P, Yamada M (2009) The crucial role of alcohol dehydrogenase Adh3 in Kluyveromyces marxianus mitochondrial metabolism. Biosci Biotechnol Biochem 73:2720–2726

    Article  CAS  Google Scholar 

  • Li TK, Theorell H (1969) Human liver alcohol dehydrogenase: inhibition by pyrazole and pyrazole analogs. Acta Chem Scand 23:892–902

    Article  CAS  Google Scholar 

  • Lindahl R, Petersen DR (1991) Lipid aldehyde oxidation as a physiological role for class 3 aldehyde dehydrogenases. Biochem Pharmacol 41:1583–1587

    Article  CAS  Google Scholar 

  • Masaki R, Yamamoto A, Tashiro YA (1989) Oxidation of aldehydic products of lipid peroxidation by rat liver microsomal aldehyde dehydrogenase. Arch Biochem Biophys 15:11–17

    Google Scholar 

  • Mego JL, Farb RM (1974) Alcohol dehydrogenases of Euglena gracilis, strain Z. Biochim Biophys Acta 350:237–239

    CAS  Google Scholar 

  • Mendoza-Cózatl D, Moreno-Sánchez R (2005) Cd2+ transport and storage in the chloroplast of Euglena gracilis. Biochim Biophys Acta 1706:88–97

    Article  Google Scholar 

  • Mitchell DY, Petersen DR (1989) Oxidation of aldehydic products of lipid peroxidation by rat liver microsomal aldehyde dehydrogenase. Arch Biochem Biophys 269:11–17

    Article  CAS  Google Scholar 

  • Munir I, Nakazawa M, Harano K, Yamaji R, Inui H, Miyatake K, Nakano Y (2002) Occurrence of a novel NADP(+)-linked alcohol dehydrogenase in Euglena gracilis. Comp Biochem Physiol B Biochem Mol Biol 132:535–540

    Article  Google Scholar 

  • Navarro L, Torres-Márquez ME, González-Moreno S, Devars S, Hernández R, Moreno-Sánchez R (1997) Comparison of physiological changes in Euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells. Comp Biochem Physiol 116:265–272

    Google Scholar 

  • Ono K, Kawanaka Y, Izumi Y, Inui H, Miyatake K, Kitaoka S, Nakano Y (1995) Mitochondrial alcohol dehydrogenase from ethanol-grown Euglena gracilis. J Biochem 117:1178–1182

    CAS  Google Scholar 

  • Palma-Gutiérrez HN, Rodríguez-Zavala JS, Jasso-Chávez R, Moreno-Sánchez R, Saavedra E (2008) Gene cloning and biochemical characterization of an alcohol dehydrogenase from Euglena gracilis. J Eukaryot Microbiol 55:554–561

    Article  Google Scholar 

  • Park S, Kim AJ, Lee M (2009) Synergic effects of alpha-tocopherol and beta-carotene on tert-butylhydroperoxide-induced HepG2 cell injury. Toxicol Ind Health 25:311–320

    Article  CAS  Google Scholar 

  • Rodríguez-Zavala JS, Saavedra-Molina A, Moreno-Sánchez R (1997) Effect of intramitochondrial Mg2+ on citrulline synthesis in rat liver mitocondria. Biochem Mol Biol Int 41:179–187

    Google Scholar 

  • Rodríguez-Zavala JS, Ortiz-Cruz MA, Moreno-Sánchez R (2006) Characterization of an aldehyde dehydrogenase from Euglena gracilis. J Eukaryot Microbiol 53:36–42

    Article  Google Scholar 

  • Rodríguez-Zavala JS, García-García JD, Ortiz-Cruz MA, Moreno-Sánchez R (2007) Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis. J Environ Sci Health A 42:1365–1378

    Article  Google Scholar 

  • Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172

    Article  Google Scholar 

  • Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate: NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18:710–720

    CAS  Google Scholar 

  • Rottenberg H, Moreno-Sánchez R (1993) The proton pumping activity of H+-ATPases: an improved fluorescence assay. Biochim Biophys Acta 1183:161–170

    Article  CAS  Google Scholar 

  • SanGiovanni JP, Chew EY, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, Seddon JM, Sperduto RD (2007) The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol 125:1225–1232

    Article  CAS  Google Scholar 

  • Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophy J 76:469–477

    Article  CAS  Google Scholar 

  • Schiff JA, Lyman H, Russell GK (1971) Isolation of mutants from Euglena gracilis. Meth Enzymol 23:143–162

    Article  Google Scholar 

  • Schimmer BP, Krinsky NI (1966) The structure of neoxanthin and the trollein-like carotenoid from Euglena gracilis. Biochemistry 5:1814–1820

    Article  CAS  Google Scholar 

  • Shigeoka S, Onishi T, Maeda K, Nakano Y, Kitaoka S (1986a) Occurrence of thiamin pyrophosphate-dependent 2-oxoglutarate decarboxylase in mitochondria of Euglena gracilis. FEBS Lett 195:43–47

    Article  CAS  Google Scholar 

  • Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1986b) The contents and sub-cellular distribution of tocopherols in Euglena gracilis. Agric Biol Chem 50:1063–1065

    Article  CAS  Google Scholar 

  • Sugawara I, Ishizaka S (1984) Polysaccharides with sulfate groups are human T cell mitogens and murine polyclonal B cell activators (PBAs) II. Cellulose sulfate and dextran sulfate with two different lower molecular weights. Microbiol Immunol 28:831–839

    CAS  Google Scholar 

  • Svanas GW, Weiner H (1985) Aldehyde dehydrogenase activity as the rate-limiting factor for acetaldehyde metabolism in rat liver. Arch Biochem Biophys 236:36–46

    Article  CAS  Google Scholar 

  • Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53:185–190

    Article  CAS  Google Scholar 

  • Tokunaga M, Nakano Y, Kitaoka S (1976) Separation and properties of the NAD-linked and NADP-linked isozymes of succinic semialdehyde dehydrogenase in Euglena gracilis. Biochim Biophys Acta 429:55–62

    CAS  Google Scholar 

  • Tottmar SO, Pettersson H, Kiessling KH (1973) The subcellular distribution and properties of aldehyde dehydrogenases in rat liver. Biochem J 135:577–586

    CAS  Google Scholar 

  • Tucci S, Vacula S, Krajcovic J, Proksch P, Martin W (2010) Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J Eukaryot Microbiol 57:63–69

    Article  CAS  Google Scholar 

  • Vardi N, Parlakpinar H, Cetin A, Erdogan A, Ozturk IC (2010) Protective effect of β-carotene on methotrexate–induced oxidative liver damage. Toxicol Pathol 38:592–597

    Article  CAS  Google Scholar 

  • Vasiliou V, Kozak CA, Lindahl R, Nebert DW (1996) Mouse microsomal class 3 aldehyde dehydrogenase: AHD3 cDNA sequence, inducibility by dioxin and clofibrate, and genetic mapping. DNA Cell Biol 15:235–245

    Article  CAS  Google Scholar 

  • Wang X, Mann CJ, Bai Y, Ni L, Weiner H (1998) Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol 180:822–830

    CAS  Google Scholar 

  • Wood AJ, Duff RJ (2009) The aldehyde dehydrogenase (ALDH) gene superfamily of the moss Physcomitrella patens and the algae Chlamydomonas reinhardtii and Ostreococcus tauri. Bryologist 112:1–11

    Article  Google Scholar 

  • Wu J, Li MH, Lin JP, Wei DZ (2011) Highly selective oxidation of benzyl alcohol using engineered Gluconobacter Oxydans in biphasic system. Curr Microbiol 62:1123–1127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by CONACyT grants No. 78775, 80534, 89412, 102926 and ICyTDF grant PICS08-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José S. Rodríguez-Zavala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Effect of acetaldehyde on the generation of Δψ driven by different substrates in isolated Euglena mitochondria. Transmembrane electrical potential was assayed as described under Materials and Methods. A, Collapse of malate-generated ∆ψ by acetaldehyde. Mal, 2 mM malate; Acetal, 0.1 mM acetaldehyde; Rote, 2 μM rotenone; D-Lac, 0.2 mM D-lactate; CCCP, 2 μM carbonylcyanide-3-chlorophenylhydrazone. B, Collapse of ethanol-generated ∆ψ by acetaldehyde and further Δψ generation by D-lactate. EtOH, 0.44 mM ethanol; Acetal, 0.1 mM acetaldehyde; Rote, 2 μM rotenone; D-Lac, 0.2 mM D-lactate; CCCP, 2 μM carbonylcyanide-3-chlorophenylhydrazone. C and D, Lack of effect of acetaldehyde on the ∆ψ generated by succinate semialdehyde (C) or D-Lactate (D). SSA, 0.25 mM succinate semialdehyde; Acetal, 0.1 mM acetaldehyde; D-Lac, 0.2 mM D-lactate; CCCP, 2 μM carbonylcyanide-3-chlorophenylhydrazone. Results are representative of at least 3 independent mitochondrial preparations. (JPEG 767 kb)

Figure S2

Kinetics of Euglena mmADH and mmALDH. Kinetic assays were carried out with an enriched mitochondrial membrane fraction prepared as indicated under Materials and Methods. A, Kinetic profile of mmADH showing two well defined components. B, Kinetic profile of mmALDH showing one hyperbolic component. In both graphs, the insets show the Lineweaver-Burk plot of the curves. Results are representative of experiments with at least 3 independent membrane preparations. (JPEG 464 kb)

Figure S3

Generation of ΔpH by SMPs. The generation of ΔpH by SMPs was assayed as detailed under Materials and Methods. A, ΔpH generation was assessed using 5 mM succinate as the substrate in the presence of rotenone. B, ΔpH generation in the absence of substrate added. C, generation of ΔpH by SMPs after the addition of 0.2 mM acetaldehyde in the presence of 0.1 mM pyrazole. Results are representative of experiments with at least 3 independent SMPs preparations. (JPEG 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoval-Sánchez, B., Jasso-Chávez, R., Lira-Silva, E. et al. Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis . J Bioenerg Biomembr 43, 519–530 (2011). https://doi.org/10.1007/s10863-011-9373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9373-4

Keywords

Navigation