Skip to main content
Log in

On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria

  • Original Paper
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Palmitic acid (Pal) is known to promote apoptosis (Sparagna G et al (2000) Am J Physiol Heart Circ Physiol 279: H2124–H2132) and its amount in blood and mitochondria increases under some pathological conditions. Yet, the mechanism of the proapoptotic action of Pal has not been elucidated. We present evidence for the involvement of the mitochondrial cyclosporin A-insensitive pore induced by Pal/Ca2+ complexes in the apoptotic process. Opening of this pore led to a fall of the mitochondrial membrane potential and the release of the proapoptotic signal cytochrome c. The addition of cytochrome c prevented these effects and recovered membrane potential, which is in contrast to the cyclosporin A-sensitive mitochondrial permeability transition pore. Oleic and linoleic acids prevented the Pal/Ca2+-induced pore opening in the intact mitochondria, this directly and significantly correlating with the effect of these fatty acids on Pal-induced apoptosis in cells (Hardy S et al (2003) J Biol Chem 278: 31861–31870). The specific probe for cardiolipin, 10-N-nonyl acridine orange, inhibited formation of this pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δψ:

mitochondrial inner membrane potential

CsA:

cyclosporin A

Pal:

palmitic acid

PalCaP:

Pal/Ca2+-activated pore

FFA:

free fatty acids

PTP:

permeability transition pore

NAO:

10-N-nonyl acridine orange

TPP+ :

tetraphenylphosphonium

cyt c :

cytochrome c

Bibliography

  • Agafonov A, Gritsenko E, Belosludtsev K, Kovalev A, Gateau-Roesch O, Saris N-E, Mironova GD (2003) Biochim Biophys Acta 1609:163–160

    Google Scholar 

  • Antonov V, Shevchenko E (1995) Vestn Ross Acad Med Nauk (In Russian) 10:48–55

    Google Scholar 

  • Ardail D, Privat J, Erget-Charlier M, Levrat C, Lerme F, Louisot P (1990) J Biol Chem 265d:18797–18802

    Google Scholar 

  • Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Biochemistry (Moscow) 70:987–994

    Article  Google Scholar 

  • Beyer K, Nuscher B (1997) Biochemistry 35:15784–15790

    Article  Google Scholar 

  • Broekemeier K, Pfeiffer D (1995) Biochemistry 34:16440–16449

    Article  CAS  Google Scholar 

  • Choi S, Swanson J (1995) Biophys Chem 269:271–278

    Article  Google Scholar 

  • Crompton M, Van Gurp M, Festjens N, van Loo, SX, Peter Vandenabeele P (2003) Biochem Biophys Res Commun 304:487–497

    Article  Google Scholar 

  • DeVeries J, Vork M, Roemen T, DeJong Y, Cleutjens J, VanderVusse G, VanBilsen M (1997) J Lipid Res 38:1384–1394

    Google Scholar 

  • Dyatlovitskaya E, Bezuglov V (1998) Biochemistry (Moscow) 63:3–5

    Google Scholar 

  • Gogvadze V, Robertson J, Enoksson M, Zhivotosky B, Orrenius S (2004) Biochem J 378:213–217

    Article  CAS  Google Scholar 

  • Gremlich S, Roduit R, Thorens D (1997) J Biol Chem 272:3216– 3222

    Article  CAS  Google Scholar 

  • Hardy S, El-Assaas W, Przybytkowsky E, Joly E, Prentki M, Langelier Y (2003) J Biol Chem 278:31861–31870

    Article  CAS  Google Scholar 

  • Jezek P, Orosz D, Modriansky M, Garlid KD (1994) J Biol Chem 269:26184–26190

    CAS  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) J Membr Biol 49:105–121

    Article  CAS  Google Scholar 

  • Kong J, Rabkin S (2000) Biochim Biophys Acta 1485:45–55

    CAS  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) Annu Rev Physiol 60:619–642

    Article  CAS  Google Scholar 

  • Listenberg L, Han X, Lewis S, Cases S, Farese R, Ory D, Schaffer J (2003) Proc Natl Acad Sci 100:3077–3082

    Google Scholar 

  • Liu X, Kim C, Yang J, Jemmerson R, Wang X (1996) Cell 86:147– 157

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mironova GD, Gateau-Roesch O, Levrat C, Gritsenko E, Pavlov E, Lazareva AV, Limarenko E, Rey P, Louisot P, Saris N-EL (2001) J Bioenerg Biomembr 33:319–331

    Article  CAS  Google Scholar 

  • Mironova GD, Gritsenko E, Gateau-Roesch O, Levrat C, Agafonov A, Belosludtsev K, France-Prigent A, Muntean D, Dubois M, Ovize M (2004) J Bioenerg Biomembr 36:171–178

    Article  CAS  Google Scholar 

  • Nicholls DG, Chalmers S (2004) J Bioenerg Biomembr 36:277–281

    Article  CAS  Google Scholar 

  • Ostrander D, Sparagna G, Amoscato A, McMillin J, Dowhan W (2001) J Biol Chem 276:38061–38067

    Article  CAS  Google Scholar 

  • Petit JM, Maftah A, Ratinaud MH, Julien R (1992) Eur J Biochem 209:267–273

    Article  CAS  Google Scholar 

  • Petrosillo G, Ruggiero F, Pistolese M, Paradies G (2004) J Biol Chem 279:53103–53108

    Article  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg M (2000) Prog Lipid Res 39:257– 288

    Article  CAS  Google Scholar 

  • Skulachev VP (1998) Biochim Biophys Acta 1363 100–124

    Article  CAS  Google Scholar 

  • Sparagna G, Hickson-Bick D, Buja L, McMillin J (2000) Am J Physiol Heart Circ Physiol 279:H2124–H2132

    CAS  Google Scholar 

  • Sultan A, Sokolove P (2001a) Arch Biochem Biophys 386:31–51

    Google Scholar 

  • Sultan A, Sokolove P (2001b) Arch Biochem Biophys 386:52–61

    Article  CAS  Google Scholar 

  • Susin S, Lorenzo H, Zamzami N, Marzo I, Snow B, Brothers G, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Googlett D, Aebersold R, Siderovski D, Penninger J, Kroemer G (1999) Nature 397:441–446

    Article  CAS  Google Scholar 

  • Wojtczak AB (1969) Biochim Biophys Acta 172:52–65

    Article  CAS  Google Scholar 

  • Zoratti M, Szabo I (1995) Biochim Biophys Acta 1241:139– 176

    Google Scholar 

  • Zoratti M, Szabo I, De Marchi U (2005) Biochim Biophys Acta 1706:40–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina D. Mironova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belosludtsev, K., Saris, NE.L., Andersson, L.C. et al. On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria. J Bioenerg Biomembr 38, 113–120 (2006). https://doi.org/10.1007/s10863-006-9010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-006-9010-9

Keywords

Navigation