Skip to main content
Log in

Adaptations to oxidative stress induced by vitamin E deficiency in rat liver

  • Original Paper
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Vitamin E deficiency in rats led to a sequence of antioxidant defense adaptations in the liver. After three weeks, α-tocopherol concentration was 5% of control, but ascorbate and ubiquinol concentrations were 2- to 3-fold greater than control. During the early phase of adaptation no differences in markers of lipid peroxidation were observed, but the activities of both cytochrome b5 reductase and glucose-6-phosphate dehydrogenase were significantly greater in deficient livers. By nine weeks, accumulation of lipid peroxidation end products began to occur along with declining concentrations of ascorbate, and higher NQO1 activities. At twelve weeks, rat growth ceased, and both lipid peroxidation products and cytosolic calcium-independent phospholipase A2 reached maximum concentrations. Thus, in growing rats the changes progressed from increases in both ubiquinol and quinone reductases through accumulation of lipid peroxidation products and loss of endogenous antioxidants to finally induction of lipid metabolizing enzymes and cessation of rat growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberg F, Zhang Y, Appelkvist EL, Dallner G (1994) Chem Biol Interact 91:1–14

    Article  CAS  Google Scholar 

  2. Arroyo A, Navarro F, Gomez-Diaz C, Crane FL, Alcain FJ, Navas P, Villalba JM (2000) J Bioenerg Biomembr 32:199–210

    Article  CAS  Google Scholar 

  3. Arroyo A, Rodriguez-Aguilera JC, Santos-Ocana C, Villalba JM, Navas P (2004) Methods Enzymol 378:207–217

    CAS  Google Scholar 

  4. Barroso MP, Gomez-Diaz C, Villalba JM, Buron MI, Lopez-Lluch G, Navas P (1997) J Bioenerg Biomembr 29:259– 267

    Article  CAS  Google Scholar 

  5. Bello RI, Gomez-Diaz C, Buron MI, Alcain FJ, Navas P, Villalba JM (2005) Exp Gerontol 40:694–706

    Article  CAS  Google Scholar 

  6. Beutler E, Vulliamy T, Luzzatto L (1996) Blood Cells Mol Dis 22:49–56

    Article  CAS  Google Scholar 

  7. Beyer RE (1994) J Bioenerg Biomembr 26:349–358

    Article  CAS  Google Scholar 

  8. Beyer RE, Seguraaguilar J, Dibernardo S, Cavazzoni M, Fato R, Fiorentini D, Galli MC, Setti M, Landi L, Lenaz G (1996) Proc Natl Acad Sci USA 93:2528–2532

    Article  CAS  Google Scholar 

  9. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  10. Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB (2000) J Biol Chem 275:28421–28427

    Article  CAS  Google Scholar 

  11. Crawford DR, Edbauer-Nechamen CA, Lowry CV, Salmon SL, Kim YK, Davies JM, Davies KJ (1994) Methods Enzymol 234:175–217

    CAS  Google Scholar 

  12. De Cabo R, Cabello R, Rios M, Lopez-Lluch G, Ingram DK, Lane MA, Navas P (2004) Exp Gerontol 39:297–304

    Article  CAS  Google Scholar 

  13. Esterbauer H, Schaur RJ, Zollner H (1991) Free Rad Biol Med 11:81–128

    Article  CAS  Google Scholar 

  14. Fernandez-Ayala DJ, Brea-Calvo G, Lopez-Lluch G, Navas P (2005) Biochim Biophys Acta 1713:129–137

    Article  CAS  Google Scholar 

  15. Fischer A, Pallauf J, Gohil K, Weber SU, Packer L, Rimbach G (2001) Biochem Biophys Res Commun 285:470–475

    Article  CAS  Google Scholar 

  16. Habig WH, Pabst MJ, Jakoby WB (1974) J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  17. Harman D (2003) Antiox Redox Signal 5:557–561

    Article  CAS  Google Scholar 

  18. Ingold KU, Webb AC, Witter D, Burton GW, Metcalfe TA, Muller DP (1987) Arch Biochem Biophys 259:224–225

    Article  CAS  Google Scholar 

  19. Kehrer JP (1993) Crit Rev Toxicol 23:21–48

    CAS  Google Scholar 

  20. Kohlschutter A, Hubner C, Jansen W, Lindner SG (1988) J Inherit Metab Dis 11 Suppl 2:149–152

    Article  Google Scholar 

  21. Kuo CF, Cheng S, Burgess JR (1995) J Nutr 125:1419–1429

    CAS  Google Scholar 

  22. Lind C, Cadenas E, Hochstein P, Ernster L (1990) Methods Enzymol 186:287–301

    CAS  Google Scholar 

  23. Loke WM, Proudfoot JM, McKinley AJ, Croft KD (2006) Biochem Biophys Res Commun 345:1039–1043

    Article  CAS  Google Scholar 

  24. Machlin LJ, Bendich A (1987) Faseb J 1:441–445

    CAS  Google Scholar 

  25. Nakagawa H, Asano A, Sato R (1975) J Biochem (Tokyo) 77:221–232

    CAS  Google Scholar 

  26. Navarro F, Arroyo A, Martin SF, Bello RI, de Cabo R, Burgess JR, Navas P, Villalba JM (1999) Biofactors 9:163–170

    CAS  Google Scholar 

  27. Navarro F, Navas P, Burgess JR, Bello RI, De Cabo R, Arroyo A, Villalba JM (1998) Faseb J 12:1665–1673

    CAS  Google Scholar 

  28. Navas P, Manuel Villalba J (2004) Methods Enzymol 378:200–206

    Article  CAS  Google Scholar 

  29. Navas P, Nowack DD, Morre DJ (1989) Cancer Res 49:2147–2156

    CAS  Google Scholar 

  30. Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L (1995) Embo J 14:5209–5215

    CAS  Google Scholar 

  31. Pascoe GA, Duda CT, Reed DJ (1987) J Chromatogr 414:440–448

    CAS  Google Scholar 

  32. Salvemini F, Franzé A, Iervolino A, Filosa S, Salzano S, Ursini MV (1999) J Biol Chem 274:2750–2757

    Article  CAS  Google Scholar 

  33. Scholz RW, Minicucci LA, Reddy CC (1997) Biochem Mol Biol Int 42:997–1006

    CAS  Google Scholar 

  34. Scholz RW, Saini AK, Reddy PC, Reddy CC (1994) Biochem Mol Biol Int 34:1215–1225

    CAS  Google Scholar 

  35. Schultz R, Ellerby LM, Gralla EB, Valentine JS, Clarke CF (1996) Biochemistry 35:6595–6603

    Article  CAS  Google Scholar 

  36. Slater AF, Nobel CS, Orrenius S (1995) Biochim Biophys Acta 1271:59–62

    Google Scholar 

  37. Sokol RJ (1988) Annu Rev Nutr 8:351–373

    Article  CAS  Google Scholar 

  38. Stocker R, Suarna C (1993) Biochim Biophys Acta 1158:15–22

    CAS  Google Scholar 

  39. Turunen M, Olsson J, Dallner G (2004) Biochim Biophys Acta 1660:171–199

    Article  CAS  Google Scholar 

  40. Ursini MV, Parrella A, Rosa G, Salzano S, Martini G (1997) Biochem J 323:801–806

    CAS  Google Scholar 

  41. Villalba JM, Gómez-Díaz C, Navarro F, Navas P (1996) Trends Comp Biochem Physiol 2:65–72

    CAS  Google Scholar 

  42. Villalba JM, Navarro F, Córdoba F, Serrano A, Arroyo A, Crane FL, Navas P (1995) Proc Natl Acad Sci USA 92:4887–4891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Placido Navas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabo, R.d., Burgess, J.R. & Navas, P. Adaptations to oxidative stress induced by vitamin E deficiency in rat liver. J Bioenerg Biomembr 38, 309–317 (2006). https://doi.org/10.1007/s10863-006-9050-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-006-9050-1

Keywords

Navigation