Skip to main content

Advertisement

Log in

Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alipanahi B, Gao X, Karakoc E, Donaldson L, Li M (2009) PICKY: a novel SVD-based NMR spectra peak picking method. Bioinformatics 25:i268–i275

    Article  Google Scholar 

  • Bartels C, Xia TH, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10

    Article  Google Scholar 

  • Bourgeois F, Lassalle JC (1971) An extension of the Munkres algorithm for the assignment problem to rectangular matrices. Commun ACM 14:802–804

    Article  MathSciNet  MATH  Google Scholar 

  • Buchner L, Güntert P (2015) Systematic evaluation of combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:81–95

    Article  Google Scholar 

  • Garrett DS, Powers R, Gronenborn AM, Clore GM (1991) A common sense approach to peak picking two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J Magn Reson 95:214–220

    ADS  Google Scholar 

  • Goddard TD, Kneller DG (2001) Sparky 3. University of California, San Francisco

    Google Scholar 

  • Guerry P, Duong VD, Herrmann T (2015) CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO. J Biomol NMR 62:473–480

    Article  Google Scholar 

  • Güntert P (1998) Structure calculation of biological macromolecules from NMR data. Q Rev Biophys 31:145–237

    Article  Google Scholar 

  • Güntert P, Buchner L (2015) Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:453–471

    Article  Google Scholar 

  • Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multidimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629

    Article  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002a) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

  • Herrmann T, Güntert P, Wüthrich K (2002b) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24:171–189

  • Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Article  ADS  Google Scholar 

  • Ikeya T, Jee J-G, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P (2011) Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR 50:137–146

    Article  Google Scholar 

  • Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genom 4:179–189

    Article  Google Scholar 

  • Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Meth Mol Biol 278:313–352

    Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR View - a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Kirchner DK, Güntert P (2011) Objective identification of residue ranges for the superposition of protein structures. BMC Bioinformatics 12:170

    Article  Google Scholar 

  • Klukowski P, Walczak MJ, Gonczarek A, Boudet J, Wider G (2015) Computer vision-based automated peak picking applied to protein NMR spectra. Bioinformatics 31:2981–2988

    Article  Google Scholar 

  • Koga N, Tatsumi-Koga R, Liu GH, Xiao R, Acton TB, Montelione GT, Baker D (2012) Principles for designing ideal protein structures. Nature 491:222–227

    Article  ADS  Google Scholar 

  • Koradi R, Billeter M, Engeli M, Güntert P, Wüthrich K (1998) Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. J Magn Reson 135:288–297

    Article  ADS  Google Scholar 

  • Liu Z, Abbas A, Jing BY, Gao X (2012) WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering. Bioinformatics 28:914–920

    Article  Google Scholar 

  • López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128:13112–13122

    Article  Google Scholar 

  • López-Méndez B, Pantoja-Uceda D, Tomizawa T, Koshiba S, Kigawa T, Shirouzu M, Terada T, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Hirota H, Yoshida M, Tanaka A, Osanai T, Seki M, Shinozaki K, Yokoyama S, Güntert P (2004) NMR assignment of the hypothetical ENTH-VHS domain At3g16270 from Arabidopsis thaliana. J Biomol NMR 29:205–206

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comp Graph 21:163–169

    Article  Google Scholar 

  • Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Indust Appl Math 5:32–38

    Article  MathSciNet  MATH  Google Scholar 

  • Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60

    Article  Google Scholar 

  • Pantoja-Uceda D, López-Méndez B, Koshiba S, Kigawa T, Shirouzu M, Terada T, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Hirota H, Yoshida M, Tanaka A, Osanai T, Seki M, Shinozaki K, Yokoyama S, Güntert P (2004) NMR assignment of the hypothetical rhodanese domain At4g01050 from Arabidopsis thaliana. J Biomol NMR 29:207–208

    Article  Google Scholar 

  • Pantoja-Uceda D, López-Méndez B, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S, Güntert P (2005) Solution structure of the rhodanese homology domain At4g01050(175–295) from Arabidopsis thaliana. Protein Sci 14:224–230

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. The art of scientific computing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Rosato A, Bagaria A, Baker D, Bardiaux B, Cavalli A, Doreleijers JF, Giachetti A, Guerry P, Güntert P, Herrmann T, Huang YJ, Jonker HRA, Mao B, Malliavin TE, Montelione GT, Nilges M, Raman S, van der Schot G, Vranken WF, Vuister GW, Bonvin AMJJ (2009) CASD-NMR: critical assessment of automated structure determination by NMR. Nat Methods 6:625–626

    Article  Google Scholar 

  • Rosato A, Aramini JM, Arrowsmith C, Bagaria A, Baker D, Cavalli A, Doreleijers JF, Eletsky A, Giachetti A, Guerry P, Gutmanas A, Güntert P, He YF, Herrmann T, Huang YPJ, Jaravine V, Jonker HRA, Kennedy MA, Lange OF, Liu GH, Malliavin TE, Mani R, Mao BC, Montelione GT, Nilges M, Rossi P, van der Schot G, Schwalbe H, Szyperski TA, Vendruscolo M, Vernon R, Vranken WF, de Vries S, Vuister GW, Wu B, Yang YH, Bonvin AMJJ (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20:227–236

    Article  Google Scholar 

  • Rosato A, Vranken W, Fogh RH, Ragan TJ, Tejero R, Pederson K, Lee HW, Prestegard JH, Yee A, Wu B, Lemak A, Houliston S, Arrowsmith CH, Kennedy M, Acton TB, Xiao R, Liu GH, Montelione GT, Vuister GW (2015) The second round of critical assessment of automated structure determination of proteins by NMR: CASD-NMR-2013. J Biomol NMR 62:413–424

    Article  Google Scholar 

  • Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829

    Article  Google Scholar 

  • Schmidt E, Güntert P (2013) Reliability of exclusively NOESY-based automated resonance assignment and structure determination of proteins. J Biomol NMR 57:193–204

    Article  Google Scholar 

  • Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P (2004) NMR assignment of the SH2 domain from the human feline sarcoma oncogene FES. J Biomol NMR 30:463–464

    Article  Google Scholar 

  • Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P (2005) Solution structure of the Src homology 2 domain from the human feline sarcoma oncogene Fes. J Biomol NMR 31:357–361

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Shimrat M (1962) Algorithm-112. Position of point relative to polygon. Commun ACM 5:434–434

    Article  Google Scholar 

  • Silver R (1960) An algorithm for the assignment problem. Commun ACM 3:605–606

    Article  MATH  Google Scholar 

  • Skinner SP, Fogh RH, Boucher W, Ragan TJ, Mureddu LG, Vuister GW (2016) CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J Biomol NMR 66

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

Download references

Acknowledgements

We thank Torsten Herrmann for providing NOESY spectra and peak lists produced by ATNOS for the CASD-NMR proteins, Piotr Klukowski for providing peak lists produced by the CV-Peak Picker software, and Fred Damberger for helpful discussions. We gratefully acknowledge financial support by the Lichtenberg program of the Volkswagen Foundation, a Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS), and a Eurostars grant by the Swiss Confederation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Güntert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3682 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würz, J.M., Güntert, P. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK. J Biomol NMR 67, 63–76 (2017). https://doi.org/10.1007/s10858-016-0084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0084-3

Keywords

Navigation