Skip to main content
Log in

Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton–proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[2H,13C,15N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal V, Tuherm T, Reinhold A et al (2013) Amplitude-modulated low-power decoupling sequences for fast magic-angle spinning NMR. Chem Phys Lett 583:1–7. doi:10.1016/j.cplett.2013.07.073

    Article  ADS  Google Scholar 

  • Agarwal V, Penzel S, Szekely K et al (2014) De Novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53:12253–12256. doi:10.1002/anie.201405730

    Article  Google Scholar 

  • Akbey Ü, Lange S, Trent Franks W et al (2010) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73. doi:10.1007/s10858-009-9369-0

    Article  Google Scholar 

  • Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659

    Article  ADS  Google Scholar 

  • Bayro MJ, Huber M, Ramachandran R et al (2009) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130:114506. doi:10.1063/1.3089370

    Article  ADS  Google Scholar 

  • Bennett A, Rienstra C, Griffiths J et al (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463

    Article  ADS  Google Scholar 

  • Bertini I, Emsley L, Felli IC et al (2011) High-resolution and sensitivity through-bond correlations in ultra-fast magic angle spinning (MAS) solid-state NMR. Chem Sci 2:345–348. doi:10.1039/c0sc00397b

    Article  Google Scholar 

  • Böckmann A, Gardiennet C, Verel R et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327. doi:10.1007/s10858-009-9374-3

    Article  Google Scholar 

  • Böckmann A, Ernst M, Meier BH (2015) Spinning proteins, the faster, the better? J Magn Reson 253:71–79. doi:10.1016/j.jmr.2015.01.012

    Article  ADS  Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state nmr spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881. doi:10.1002/anie.200600328

    Article  Google Scholar 

  • De Paëpe G, Lewandowski JR, Loquet A et al (2008) Proton assisted recoupling and protein structure determination. J Chem Phys 129:245101. doi:10.1063/1.3036928

    Article  ADS  Google Scholar 

  • Demers J-P, Chevelkov V, Lange A (2011) Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl Magn Reson 40:101–113. doi:10.1016/j.ssnmr.2011.07.002

    Article  Google Scholar 

  • Deschamps M (2014) Ultrafast magic angle spinning nuclear magnetic resonance. Annu Rep NMR Spectrosc 81:109–144. doi:10.1016/B978-0-12-800185-1.00003-6

    Article  Google Scholar 

  • Duma L, Abergel D, Ferrage F et al (2008) Broadband dipolar recoupling for magnetization transfer in solid-state NMR correlation spectroscopy. ChemPhysChem 9:1104–1106. doi:10.1002/cphc.200800053

    Article  Google Scholar 

  • Ernst M, Meier MA, Tuherm T et al (2004) Low-power high-resolution solid-state nmr of peptides and proteins. J Am Chem Soc 126:4764–4765. doi:10.1021/ja0494510

    Article  Google Scholar 

  • Ernst M, Samoson A, Meier BH (2005) Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-state NMR: a unified description using bimodal Floquet theory. J Chem Phys 123:64102. doi:10.1063/1.1944291

    Article  Google Scholar 

  • Grommek A, Meier BH, Ernst M (2006) Distance information from proton-driven spin diffusion under MAS. Chem Phys Lett 427:404–409. doi:10.1016/j.cplett.2006.07.005

    Article  ADS  Google Scholar 

  • Hohwy M, Rienstra CM, Griffin RG (2002) Band-selective homonuclear dipolar recoupling in rotating solids. J Chem Phys 117:4973. doi:10.1063/1.1488136

    Article  ADS  Google Scholar 

  • Hou G, Yan S, Sun S et al (2011) Spin diffusion driven by R-symmetry sequences: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids. J Am Chem Soc 133:3943–3953. doi:10.1021/ja108650x

    Article  Google Scholar 

  • Hou G, Yan S, Trébosc J et al (2013) Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J Magn Reson 232:18–30. doi:10.1016/j.jmr.2013.04.009

    Article  ADS  Google Scholar 

  • Hu B, Lafon O, Trébosc J et al (2011) Broad-band homo-nuclear correlations assisted by 1H irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS frequencies. J Magn Reson 212:320–329. doi:10.1016/j.jmr.2011.07.011

    Article  ADS  Google Scholar 

  • Huang KY, Amodeo GA, Tong L, McDermott A (2011) The structure of human ubiquitin in 2-methyl-2,4-pentanediol: a new conformational switch. Protein Sci 20:630–639. doi:10.1002/pro.584

    Article  Google Scholar 

  • Huber M, Hiller S, Schanda P et al (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918. doi:10.1002/cphc.201100062

    Article  Google Scholar 

  • Igumenova TI, McDermott AE, Zilm KW et al (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126:6720–6727. doi:10.1021/ja030547o

    Article  Google Scholar 

  • Ishii Y (2001) [sup 13]C–[sup 13]C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473. doi:10.1063/1.1359445

    Article  ADS  Google Scholar 

  • Kubo A, McDowell CA (1988) Spectral spin diffusion in polycrystalline solids under magic-angle spinning. J Chem Soc, Faraday Trans 1(84):3713. doi:10.1039/f19888403713

    Article  Google Scholar 

  • Kümmerlen J, van Beek JD, Vollrath F, Meier BH (1996) Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29:2920–2928. doi:10.1021/ma951098i

    Article  ADS  Google Scholar 

  • Ladizhansky V (2009) Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins. Solid State Nucl Magn Reson 36:119–128. doi:10.1016/j.ssnmr.2009.07.003

    Article  Google Scholar 

  • Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids †. J Am Chem Soc 124:9704–9705. doi:10.1021/ja026691b

    Article  Google Scholar 

  • Lange A, Scholz I, Manolikas T et al (2009) Low-power cross polarization in fast magic-angle spinning NMR experiments. Chem Phys Lett 468:100–105. doi:10.1016/j.cplett.2008.11.089

    Article  ADS  Google Scholar 

  • Lewandowski JR, Dumez JN, Akbey Ü et al (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211. doi:10.1021/jz200844n

    Article  Google Scholar 

  • Linser R, Bardiaux B, Higman V et al (2011) Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133:5905–5912. doi:10.1021/ja110222h

    Article  Google Scholar 

  • Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287. doi:10.1103/PhysRevLett.2.285

    Article  ADS  Google Scholar 

  • Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300. doi:10.1063/1.437915

    Article  ADS  Google Scholar 

  • Meier BH (1994) Polarization transfer and spin diffusion in solid-state NMR. Adv Magn Opt Reson 18:1

    Google Scholar 

  • Nishiyama Y, Lu X, Trébosc J et al (2012) Practical choice of 1H–1H decoupling schemes in through-bond 1H–{X} HMQC experiments at ultra-fast MAS. J Magn Reson 214:151–158. doi:10.1016/j.jmr.2011.10.014

    Article  ADS  Google Scholar 

  • Parthasarathy S, Nishiyama Y, Ishii Y (2013) Sensitivity and resolution enhanced solid-state nmr for paramagnetic systems and biomolecules under very fast magic angle spinning. Acc Chem Res 46:2127–2135. doi:10.1021/ar4000482

    Article  Google Scholar 

  • Penzel S, Smith AA, Agarwal V et al (2015) Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods. J Biomol NMR 63:165–186. doi:10.1007/s10858-015-9975-y

    Article  Google Scholar 

  • Reif B (2012) Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. J Magn Reson 216:1–12. doi:10.1016/j.jmr.2011.12.017

    Article  ADS  Google Scholar 

  • Robyr P, Meier BH, Ernst RR (1989) Radio-frequency-driven nuclear spin diffusion in solids. Chem Phys Lett 162:417–423. doi:10.1016/0009-2614(89)87001-0

    Article  ADS  Google Scholar 

  • Robyr P, Meier BH, Ernst RR (1991) Tensor correlation by 2D spin-diffusion powder NMR spectroscopy: determination of the asymmetry of the hydrogen bond potential in benzoic acid. Chem Phys Lett 187:471. doi:10.1016/0009-2614(91)80285-6

    Article  ADS  Google Scholar 

  • Scholz I, Huber M, Manolikas T et al (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460:278–283. doi:10.1016/j.cplett.2008.05.058

    Article  ADS  Google Scholar 

  • Scholz I, van Beek JD, Ernst M (2010) Operator-based Floquet theory in solid-state NMR. Solid State Nucl Magn Reson 37:39–59. doi:10.1016/j.ssnmr.2010.04.003

    Article  Google Scholar 

  • Senker J, Seyfarth L, Voll J (2004) Determination of rotational symmetry elements in NMR crystallography. Solid State Sci 6:1039–1052. doi:10.1016/j.solidstatesciences.2004.07.001

    Article  ADS  Google Scholar 

  • Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475. doi:10.1016/0022-2364(82)90213-X

    ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2003) 13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325. doi:10.1063/1.1534105

    Article  ADS  Google Scholar 

  • Teymoori G, Pahari B, Stevensson B, Edén M (2012) Low-power broadband homonuclear dipolar recoupling without decoupling: double-quantum 13C NMR correlations at very fast magic-angle spinning. Chem Phys Lett 547:103–109. doi:10.1016/j.cplett.2012.07.053

    Article  ADS  Google Scholar 

  • Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150:81–99. doi:10.1006/jmre.2001.2310

    Article  ADS  Google Scholar 

  • Veshtort M, Griffin RG (2011) Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics. J Chem Phys 135:134509. doi:10.1063/1.3635374

    Article  ADS  Google Scholar 

  • Weingarth M, Bodenhausen G, Tekely P (2009) Broadband carbon-13 correlation spectra of microcrystalline proteins in very high magnetic fields. J Am Chem Soc 131:13937–13939. doi:10.1021/ja9036143

    Article  Google Scholar 

  • Weingarth M, Bodenhausen G, Tekely P (2010) Broadband magnetization transfer using moderate radio-frequency fields for NMR with very high static fields and spinning speeds. Chem Phys Lett 488:10–16. doi:10.1016/j.cplett.2010.01.072

    Article  ADS  Google Scholar 

  • Wittmann JJ, Hendriks L, Meier BH, Ernst M (2014) Controlling spin diffusion by tailored rf-irradiation schemes. Chem Phys Lett 608:60–67. doi:10.1016/j.cplett.2014.05.057

    Article  ADS  Google Scholar 

  • Zhou DH, Shah G, Cormos M et al (2007) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801. doi:10.1021/ja073462m

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank Anders B. Nielsen for the helpful discussions. Nils-Alexander Lakomek and Susanne Penzel are acknowledged for assistance with the fast-spinning probe. This work has been supported by the Swiss National Science Foundation (grants 200020_146757 and 200020_159797).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beat H. Meier or Matthias Ernst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittmann, J.J., Agarwal, V., Hellwagner, J. et al. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS. J Biomol NMR 66, 233–242 (2016). https://doi.org/10.1007/s10858-016-0071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0071-8

Keywords

Navigation