Skip to main content
Log in

HNCA+, HNCO+, and HNCACB+ experiments: improved performance by simultaneous detection of orthogonal coherence transfer pathways

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Three experiments, BEST–TROSY HNCA+, HNCO+ and HNCACB+ are presented for sequential backbone resonance assignment of 13C, 15N labelled proteins. The novelty of these experiments with respect to conventional pulse sequences is the detection of additional orthogonal coherence transfer pathways that results in enhanced sensitivity for sequential correlations without significantly compromising the intensity of intra-residue correlation peaks. In addition, a 2-step phase cycle separates peaks originating from the orthogonal coherence transfer pathways in 2 sub-spectra, thus providing similar information as obtained from performing a pair of sequential and intra-residue correlation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Boelens R, Burgering M, Fogh RH, Kaptein R (1994) Time-saving methods for heteronuclear multidimensional NMR of (13C, 15 N) doubly labeled proteins. J Biomol NMR 4:201–213

    Article  Google Scholar 

  • Brutscher B (2002) Intraresidue HNCA and COHNCA experiments for protein backbone resonance assignment. J Magn Reson 156:155–159

    Article  ADS  Google Scholar 

  • Chakraborty S, Paul S, Hosur RV (2012) Simultaneous acquisition of 13Cα–15N and 1H–15N–15N sequential correlations in proteins: application of dual receivers in 3D HNN. J Biomol NMR 52:5–10

    Article  Google Scholar 

  • Delaglio F, Torchia DA, Bax A (1991) Measurement of 15N–13C J couplings in stahpylococcal nuclease. J Biomol NMR 1:439–446

    Article  Google Scholar 

  • Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre JP, Brutscher B (2009) Longitudinal relaxation enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577

    Article  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15

    Article  Google Scholar 

  • Frueh DP, Arthanari H, Wagner G (2005) Unambiguous assignment of NMR protein backbone signals with a time-shared triple-resonance experiment. J Biomol NMR 33:187–196

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    ADS  Google Scholar 

  • Guo C, Zhang D, Tugarinov V (2008) An NMR experiment for simultaneous TROSY-based detection of amide and methyl groups in large proteins. J Am Chem Soc 130:10872–10873

    Article  Google Scholar 

  • Haasnoot CaG, van de Ven FJM, Hilbers CW (1984) COCONOSY. Combination of 2D correlated and 2D nuclear overhauser enhancement spectroscopy in a single experiment. J Magn Reson 56:343–349

    ADS  Google Scholar 

  • Haupt C, Patzschke R, Weininger U, Groger S, Kovermann M, Balbach J (2011) Transient enzyme À substrate recognition monitored by real-time NMR. J Am Chem Soc 133:11154–11162

    Article  Google Scholar 

  • Ikura M, Kay LE, Bax A (1990) A novel-approach for sequential assignment of H-1, C-13, and N-15 spectra of larger proteins—heteronuclear triple-resonance 3-dimensional Nmr-spectroscopy—application to calmodulin. Biochemistry 29:4659–4667

    Article  Google Scholar 

  • Kupce E, Freeman R (1994) Wide-band excitation with polychromatic pulses. J Magn Reson A 108:268–273

    Article  ADS  Google Scholar 

  • Kupče E, Kay LE (2012) Parallel acquisition of multi-dimensional spectra in protein NMR. J Biomol NMR 54:1–7

    Article  Google Scholar 

  • Kupce E, Boyd J, Campbell ID (1995) Short selective pulses for biochemical applications. J Magn Reson B 106:300–303

    Article  Google Scholar 

  • Kupče Ē, Kay LE, Freeman R (2010) Detecting the “afterglow” of 13C NMR in proteins using multiple receivers. J Am Chem Soc 132:18008–18011

    Article  Google Scholar 

  • Nietlispach D, Ito Y, Laue ED (2002) A novel approach for the sequential backbone assignment of larger proteins: selective intra-HNCA and DQ-HNCA. J Am Chem Soc 124:11199–11207

    Article  Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378

    Article  ADS  Google Scholar 

  • Permi P (2002) Intraresidual HNCA: an experiment for correlating only intraresidual backbone resonances. J Biomol NMR 23:201–209

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in C-13-labeled proteins. J Am Chem Soc 120:6394–6400

    Article  Google Scholar 

  • Reckel S, Hänsel R, Löhr F, Dötsch V (2007) In-cell NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 51:91–101

    Article  Google Scholar 

  • Rennella E, Cutuil T, Schanda P, Ayala I, Forge V, Brutscher B (2012) Real-Time NMR characterization of structure and dynamics in a transiently populated protein folding intermediate. J Am Chem Soc 134:8066–8069

    Article  Google Scholar 

  • Sakakibara D et al (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105

    Article  ADS  Google Scholar 

  • Salzmann M, Ross A, Czisch M, Wider G (2000) Sensitivity gain by simultaneous acquisition of two coherence pathways: the HNCA(+) experiment. J Magn Reson 143:223–228

    Article  ADS  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  Google Scholar 

  • Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    Article  Google Scholar 

  • Smith MA, Hu H, Shaka AJ (2001) Improved broadband inversion performance for NMR in liquids. J Magn Reson 151:269–283

    Article  ADS  Google Scholar 

  • Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST–TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321

    Article  Google Scholar 

  • Vanbelle C, Brutscher B, Blackledge M, Muhle-Goll C, Remy MH, Masson JM, Marion D (2003) NMR study of the interaction between Zn(II) ligated bleomycin and Streptoalloteichus hindustanus bleomycin resistance proteins. Biochemistry 42:651–663

    Article  Google Scholar 

  • Wiedemann C, Bellstedt P, Kirschstein A, Häfner S, Herbst C, Görlach M, Ramachandran R (2014) Sequential protein NMR assignments in the liquid state via sequential data acquisition. J Magn Reson 239:23–28

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Zsofia Solyom for making a sample of NS5A available for this study, and Isabel Ayala for preparation of the ubiquitin sample. This work has been partly supported by grants from the European Union (FP7-I3-BIO-NMR contract No. 261862, FP7-ITN-IDPbyNMR contract No. 264257). S.G. acknowledges support from Bruker Biospin (France). This work used the NMR and isotope labeling platforms of the Grenoble Instruct centre (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Brutscher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Caballero, S., Favier, A. & Brutscher, B. HNCA+, HNCO+, and HNCACB+ experiments: improved performance by simultaneous detection of orthogonal coherence transfer pathways. J Biomol NMR 60, 1–9 (2014). https://doi.org/10.1007/s10858-014-9847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9847-x

Keywords

Navigation