Skip to main content
Log in

RASP: rapid and robust backbone chemical shift assignments from protein structure

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Chemical shift prediction has an unappreciated power to guide backbone resonance assignment in cases where protein structure is known. Here we describe Resonance Assignment by chemical Shift Prediction (RASP), a method that exploits this power to derive protein backbone resonance assignments from chemical shift predictions. Robust assignments can be obtained from a minimal set of only the most sensitive triple-resonance experiments, even for spectroscopically challenging proteins. Over a test set of 154 proteins RASP assigns 88 % of residues with an accuracy of 99.7 %, using only information available from HNCO and HNCA spectra. Applied to experimental data from a challenging 34 kDa protein, RASP assigns 90 % of manually assigned residues using only 40 % of the experimental data required for the manual assignment. RASP has the potential to significantly accelerate the backbone assignment process for a wide range of proteins for which structural information is available, including those for which conventional assignment strategies are not feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5:e1000307

    Article  Google Scholar 

  • Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z, Mathew S, Peng D, Song Y, Van Horn WD, Zhuang T, Sonnichsen FD, Sanders CR (2013) The quiet renaissance of protein nuclear magnetic resonance. Biochemistry 52:1303–1320

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620

    Article  ADS  Google Scholar 

  • Crippen GM, Rousaki A, Revington M, Zhang Y, Zuiderweg ERP (2010) SAGA: rapid automatic mainchain NMR assignment for large proteins. J Biomol NMR 46:281–298

    Article  Google Scholar 

  • Gronwald W, Willard L, Jellard T, Boyko RF, Rajarathnam K, Wishart DS, Sonnichsen FD, Sykes BD (1998) CAMRA: chemical shift based computer aided protein NMR assignments. J Biomol NMR 12:395–405

    Article  Google Scholar 

  • Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57

    Article  Google Scholar 

  • Headey SJ, Vom A, Simpson JS, Scanlon MJ (2008) Backbone assignments of the 34 kDa ketopantoate reductase from E. coli. Biomol NMR Assign 2:93–96

    Article  Google Scholar 

  • Jaipuria G, Krishnarjuna B, Mondal S, Dubey A, Atreya HS (2012) Amino acid selective labeling and unlabeling for protein resonance assignments. Adv Exp Med Biol 992:95–118

    Article  Google Scholar 

  • Jung YS, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  Google Scholar 

  • Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894–13895

    Article  Google Scholar 

  • Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist 2:83–87

    Article  Google Scholar 

  • Langmead CJ, Donald BR (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J Biomol NMR 29:111–138

    Article  Google Scholar 

  • Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3676

    Article  Google Scholar 

  • MacRaild CA, Anders RF, Foley M, Norton RS (2011) Apical membrane antigen 1 as an anti-malarial drug target. Curr Top Med Chem 11:2039–2047

    Article  Google Scholar 

  • Matak-Vinkovic D, Vinkovic M, Saldanha SA, Ashurst JL, von Delft F, Inoue T, Miguel RN, Smith AG, Blundell TL, Abell C (2001) Crystal structure of Escherichia coli ketopantoate reductase at 1.7 A resolution and insight into the enzyme mechanism. Biochemistry 40:14493–14500

    Article  Google Scholar 

  • Mittermaier AK, Kay LE (2009) Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci 34:601–611

    Article  Google Scholar 

  • Resende MGC, Ribeiro CC (2010) Greedy randomised adaptive search procedures: advances and applications. In: Gendreau M, Potvin J-Y (eds) Handbook of metaheuristics. Springer, New York, pp 283–319

  • Richard D, MacRaild CA, Riglar DT, Chan J-A, Foley M, Baum J, Ralph SA, Norton RS, Cowman AF (2010) Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 285:14815–14822

    Article  Google Scholar 

  • Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829

    Article  Google Scholar 

  • Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Stratmann D, Guittet E, van Heijenoort C (2010) Robust structure-based resonance assignment for functional protein studies by NMR. J Biomol NMR 46:157–173

    Article  Google Scholar 

  • Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502

    Article  Google Scholar 

  • Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  Google Scholar 

Download references

Acknowledgments

We thank Stephen Headey and Martin Scanlon for sharing the KPR data, and David Chalmers for helpful discussions on optimization strategies. This work was supported in part by an Australian National Health and Medical Research Council project grant (1025150). RSN acknowledges fellowship support from the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. MacRaild.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacRaild, C.A., Norton, R.S. RASP: rapid and robust backbone chemical shift assignments from protein structure. J Biomol NMR 58, 155–163 (2014). https://doi.org/10.1007/s10858-014-9813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9813-7

Keywords

Navigation