Skip to main content
Log in

Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

This report describes a novel method for overexpression of 13C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly 13C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man8GlcNAc2 oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, 13C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific 13C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The 13C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82

    Article  Google Scholar 

  • Amano K, Chiba Y, Kasahara Y, Kato Y, Kaneko MK, Kuno A, Ito H, Kobayashi K, Hirabayashi J, Jigami Y, Narimatsu H (2008) Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci USA 105:3232–3237

    Article  ADS  Google Scholar 

  • Angulo J, Rademacher C, Biet T, Benie AJ, Blume A, Peters H, Palcic M, Parra F, Peters T (2006) NMR analysis of carbohydrate-protein interactions. Methods Enzymol 416:12–30

    Article  Google Scholar 

  • Arya R, Bhattacharya A, Saini KS (2008) Dictyostelium discoideum—a promising expression system for the production of eukaryotic proteins. FASEB J 22:4055–4066

    Article  Google Scholar 

  • Berman E, Walters DE, Allerhand A (1981) Structure and dynamic behavior of the oligosaccharide side chain of bovine pancreatic ribonuclease B. Application of carbon 13 nuclear magnetic resonance spectroscopy. J Biol Chem 256:3853–3857

    Google Scholar 

  • Blanchard V, Gadkari RA, George AVE, Roy S, Gerwig GJ, Leeflang BR, Dighe RR, Boelens R, Kamerling JP (2008) High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains–selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj J 25:245–257

    Article  Google Scholar 

  • Bose B, Zhao S, Stenutz R, Cloran F, Bondo PB, Bondo G, Hertz B, Carmichael I, Serianni AS (1998) Three-bond C–O–C–C spin-coupling constants in carbohydrates: development of a Karplus relationship. J Am Chem Soc 120:11158–11173

    Article  Google Scholar 

  • Chiba Y, Akeboshi H (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull 32:786–795

    Article  Google Scholar 

  • Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima E (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Duker JM, Serianni AS (1993) (13C)-substituted sucrose: 13C–1H and 13C–13C spin coupling constants to assess furanose ring and glycosidic bond conformations in aqueous solution. Carbohydr Res 249:281–303

    Article  Google Scholar 

  • Fadda E, Woods RJ (2010) Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 15:596–609

    Article  Google Scholar 

  • Gabius HJ, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of sugar code. Trends Biochem Sci 36:298–313

    Article  Google Scholar 

  • González L, Bruix M, Díaz-Mauriño T, Feizi T, Rico M, Solís D, Jiménez-Barbero J (2000) Conformational studies of the Man8 oligosaccharide on native ribonuclease B and on the reduced and denatured protein. Arch Biochem Biophys 383:17–27

    Article  Google Scholar 

  • Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392

    Article  Google Scholar 

  • Herscovics A, Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J 7:540–550

    Google Scholar 

  • Jonsson KHM, Pendrill R, Widmalm G (2011) NMR analysis of conformationally dependent nJC, H and nJC, C in the trisaccharide α-L-Rhap-(1 → 2)[α-L-Rhap-(1 → 3)]-α-L-Rhap-OMe and a site-specifically labeled isotopologue thereof. Magn Reson Chem 49:117–124

    Article  Google Scholar 

  • Kamiya Y, Yamaguchi Y, Takahashi N, Arata Y, Kasai K, Ihara Y, Matsuo I, Ito Y, Yamamoto K, Kato K (2005) Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor. J Biol Chem 280:37178–37182

    Article  Google Scholar 

  • Kamiya Y, Kamiya D, Urade R, Suzuki T, Kato K (2009) Sophisticated modes of sugar recognition by intracellular lectins involved in quality control of glycoproteins. In: Powell G, McCabe O (eds) Glycobiology research trends. Nova Scirnce Publisher, Inc., NY, pp 27–40

    Google Scholar 

  • Kamiya Y, Yagi-Utsumi M, Yagi H, Kato K (2011) Structural and molecular basis of carbohydrate-protein interaction systems as potential therapeutic targets. Curr Pharma Des (in press)

  • Kato K, Kamiya Y (2007) Structural views of glycoprotein-fate determination in cells. Glycobiology 17:1031–1044

    Article  ADS  Google Scholar 

  • Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y (2008) 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta 1780:619–625

    Article  Google Scholar 

  • Kato K, Yamaguchi Y, Arata Y (2010) Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog Nucl Magn Reson Spectrosc 56:346–359

    Article  Google Scholar 

  • Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515–523

    Article  Google Scholar 

  • Lustbader JW, Birken S, Pollak S, Pound A, Chait BT, Mirza UA, Ramnarain S, Canfield RE, Brown JM (1996) Expression of human chorionic gonadotropin uniformly labeled with NMR isotopes in Chinese hamster ovary cells: an advance toward rapid determination of glycoprotein structures. J Biomol NMR 7:295–304

    Article  Google Scholar 

  • Matsuo I, Wada M, Manabe S, Yamaguchi Y, Otake K, Kato K, Ito Y (2003) Synthesis of monoglucosylated high-mannose-type dodecasaccharide, a putative ligand for molecular chaperone, calnexin, and calreticulin. J Am Chem Soc 125:3402–3403

    Article  Google Scholar 

  • Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y (1993) Structure of the N-linked oligosaccharides that show the complete loss of α-1, 6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem 268:26338–26345

    Google Scholar 

  • Olsson U, Serianni AS, Stenutz R (2008) Conformational analysis of beta-glycosidic linkages in 13C-labeled glucobiosides using inter-residue scalar coupling constants. J Phys Chem B 112:4447–4453

    Article  Google Scholar 

  • Peat S, Whelan WJ, Edwards TE (1961) Polysaccharides of Baker’s yeast. Part IV. Mannan. J Chem Soc:29–34

  • Säwén E, Massad T, Landersjö C, Damberg P, Widmalm G (2010) Population distribution of flexible molecules from maximum entropy analysis using different priors as background information: application to the ϕ, ψ-conformational space of the α-(1 → 2)-linked mannose disaccharide present in N- and O-linked glycoproteins. Org Biomol Chem 8:3684–3695

    Article  Google Scholar 

  • Sharon N (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem 282:2753–2764

    Article  Google Scholar 

  • Skrisovska L, Schubert M, Allain FHA (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46:51–65

    Article  Google Scholar 

  • Strauss A, Bitsch F, Fendrich G, Graff P, Knecht R, Meyhack B, Jahnke W (2005) Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. J Biomol NMR 31:343–349

    Article  Google Scholar 

  • Takahashi N, Kato K (2003) GALAXY (Glycoanalysis by the Three Axes of MS and Chromatography): a web application that assists structural analyses of N-glycans. Trends Glycosci Glycotech 14:235–251

    Article  Google Scholar 

  • Takamatsu S, Chiba Y, Ishii T, Nakayama K, Yokomatsu-Kubota T, Makino T, Fujibayashi Y, Jigami Y (2004) Monitoring of the tissue distribution of fibroblast growth factor containing a high mannose-type sugar chain produced in mutant yeast. Glycoconj J 20:385–397

    Article  Google Scholar 

  • Tomiya N, Lee YC, Yoshida T, Wada Y, Awaya J, Kurono M, Takahashi N (1991) Calculated two-dimensional sugar map of pyridylaminated oligosaccharides: elucidation of the jack bean alpha-mannosidase digestion pathway of Man9GlcNAc2. Anal Biochem 193:90–100

    Article  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  Google Scholar 

  • Vliegenthart JFG (1980) High resolution 1H-NMR spectroscopy of carbohydrate structures. Adv Exp Med Biol 125:77–91

    Google Scholar 

  • von der Lieth CW, Siebert HC, Kožár T, Burchert M, Frank M, Gilleron M, Kaltner H, Kayser G, Tajkhorshid E, Bovin NV, Vliegenthart JFG, Gabius HJ (1998) Lectin ligands: new insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins. Acta Anat (Basel) 161:91–109

    Article  Google Scholar 

  • Walton WJ, Kasprzak AJ, Hare JT, Logan TM (2006) An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells. J Biomol NMR 36:225–233

    Article  Google Scholar 

  • Weller CT, Lustbader J, Seshadri K, Brown JM, Chadwick CA, Kolthoff CE, Ramnarain S, Pollak S, Canfield R, Homans SW (1996) Structural and conformational analysis of glycan moieties in situ on isotopically 13C, 15N-enriched recombinant human chorionic gonadotropin. Biochemistry 35:8815–8823

    Article  Google Scholar 

  • Yamaguchi Y (2008) Development and applications of stable-isotope-labeling methods oriented to structural glycobiology. Trends Glycosci Glycotech 20:117–130

    Article  Google Scholar 

  • Yamaguchi Y, Kato K (2010) Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Methods Enzymol 478:305–322

    Article  Google Scholar 

  • Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, Shitara K, Kato K (2006) Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760:693–700

    Article  Google Scholar 

  • Zhang W, Zhao H, Carmichael I, Serianni AS (2009) An NMR investigation of putative interresidue H-bonding in methyl α-cellobioside in solution. Carbohydr Res 344:1582–1587

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yukiko Isono (IMS) for her help in preparation of the oligosaccharide and Michiko Nakano (IMS) for her help with NMR measurements. This work was supported, in part, by the Nanotechnology Network Project and Grants in Aid for Scientific Research, (20107004, 21370050, and 22020039) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by the CREST project from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiya, Y., Yamamoto, S., Chiba, Y. et al. Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. J Biomol NMR 50, 397–401 (2011). https://doi.org/10.1007/s10858-011-9525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9525-1

Keywords

Navigation