Skip to main content
Log in

Residual dipolar couplings: are multiple independent alignments always possible?

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

RDCs for the 14 kDa protein hen egg-white lysozyme (HEWL) have been measured in eight different alignment media. The elongated shape and strongly positively charged surface of HEWL appear to limit the protein to four main alignment orientations. Furthermore, low levels of alignment and the protein’s interaction with some alignment media increases the experimental error. Together with heterogeneity across the alignment media arising from constraints on temperature, pH and ionic strength for some alignment media, these data are suitable for structure refinement, but not the extraction of dynamic parameters. For an analysis of protein dynamics the data must be obtained with very low errors in at least three or five independent alignment media (depending on the method used) and so far, such data have only been reported for three small 6–8 kDa proteins with identical folds: ubiquitin, GB1 and GB3. Our results suggest that HEWL is likely to be representative of many other medium to large sized proteins commonly studied by solution NMR. Comparisons with over 60 high-resolution crystal structures of HEWL reveal that the highest resolution structures are not necessarily always the best models for the protein structure in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrientos LG, Dolan C, Gronenborn AM (2000) Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings. J Biomol NMR 16:329–337

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  Google Scholar 

  • Bernadó P, Blackledge M (2004a) Anisotropic small amplitude peptide plane dynamics in proteins from residual dipolar couplings. J Am Chem Soc 126:4907–4920

    Article  Google Scholar 

  • Bernadó P, Blackledge M (2004b) Local dynamic amplitude on the protein backbone from dipolar couplings: toward the elucidation of slower motions in biomolecules. J Am Chem Soc 126:7760–7761

    Article  Google Scholar 

  • Bouvignies G, Markwick P, Brüschweiler R, Blackledge M (2006) Simultaneous determination of protein backbone structure and dynamics from residual dipolar couplings. J Am Chem Soc 128:15100–15101

    Article  Google Scholar 

  • Boyd J, Redfield C (1998) Defining the orientation of the 15N shielding tensor using 15N NMR relaxation data for a protein in solution. J Am Chem Soc 120:9692–9693

    Article  Google Scholar 

  • Boyd J, Redfield C (1999) Characterization of 15N chemical shift anisotropy from orientation-dependent changes to 15N chemical shifts in dilute bicelle solutions. J Am Chem Soc 121:7441–7442

    Article  Google Scholar 

  • Brünger AT (1992) XPLOR version 3.1: a system for X-ray crystallography and NMR. Yale University Press, New Haven, CT

    Google Scholar 

  • Buck M, Karplus M (1999) Internal and overall peptide group motion in proteins: molecular dynamics simulations for lysozyme compared with results from X-ray and NMR spectroscopy. J Am Chem Soc 121:9645–9658

    Article  Google Scholar 

  • Buck M, Boyd J, Redfield C, MacKenzie DA, Jeenes DJ, Archer DB, Dobson CM (1995) Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34:4041–4055

    Article  Google Scholar 

  • Clore GM, Schwieters CD (2004) Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements. Biochemistry 43:10678–10691

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837

    Article  Google Scholar 

  • Deschamps M, Campbell ID, Boyd J (2005) Residual dipolar couplings and some specific models for motional averaging. J Magn Res 172:118–132

    Article  ADS  Google Scholar 

  • Higman VA (2004) The use of bicelles and other ordered media to study protein structure and dynamics. DPhil Thesis, University of Oxford

  • Higman VA, Boyd J, Smith LJ, Redfield C (2004) Asparagine and glutamine side-chain conformations in solution and crystal: a comparison for hen egg-white lysozyme using residual dipolar couplings. J Biomol NMR 30:327–346

    Article  Google Scholar 

  • Hus J-C, Brüschweiler R (2002) Principal component method for assessing structural heterogeneity across multiple alignment media. J Biomol NMR 24:123–132

    Article  Google Scholar 

  • Hus J-C, Peti W, Griesinger C, Brüschweiler R (2003) Self-consistency analysis of dipolar couplings in multiple alignments of ubiquitin. J Am Chem Soc 125:5596–5597

    Article  Google Scholar 

  • Lakomek NA, Carlomagno T, Becker S, Griesinger C, Meiler J (2006) A thorough dynamic interpretation of residual dipolar couplings in ubiquitin. J Biomol NMR 34:101–115

    Article  Google Scholar 

  • Lakomek NA, Walter KFA, Farès C, Lange OF, de Groot BL, Grubmüller H, Brüschweiler R, Munk A, Becker S, Meiler J, Griesinger C (2008) Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics. J Biomol NMR 41:139–155

    Article  Google Scholar 

  • Latham MP, Hanson P, Brown DJ, Pardi A (2008) Comparison of alignment tensors generated for native tRNA(Val) using magnetic fields and liquid crystalline media. J Biomol NMR 40:83–94

    Article  Google Scholar 

  • Meiler J, Prompers JJ, Peti W, Griesinger C, Brüschweiler R (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123:6098–6107

    Article  Google Scholar 

  • Meissner A, Duus JØ, Sørensen OW (1997) Spin-state-selective excitation. Application for E.COSY-type measurement of JHH coupling constants. J Magn Res 128:92–97

    Article  ADS  Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Res 131:373–378

    Article  ADS  Google Scholar 

  • Peti W, Meiler J, Brüschweiler R, Griesinger C (2002) Model-free analysis of protein backbone motion from residual dipolar couplings. J Am Chem Soc 124:5822–5833

    Article  Google Scholar 

  • Ramirez BE, Bax A (1998) Modulation of the alignment tensor of macromolecules dissolved in a dilute liquid crystalline medium. J Am Chem Soc 120:9106–9107

    Article  Google Scholar 

  • Ruan K, Tolman JR (2005) Composite alignment media for the measurement of independent sets of NMR residual dipolar couplings. J Am Chem Soc 127:15032–15033

    Article  Google Scholar 

  • Ruan K, Briggman KB, Tolman JR (2008) De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media. J Biomol NMR 41:61–76

    Article  Google Scholar 

  • Rückert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122:7793–7797

    Article  Google Scholar 

  • Salmon L, Bouvignies G, Markwick P, Lakomek NA, Showalter S, Li D-W, Walter KFA, Griesinger C, Brüschweiler R, Blackledge M (2009) Protein conformational flexibility from structure-free analysis of NMR dipolar couplings: quantitative and absolute determination of backbone motion in ubiquitin. Angew Chem Int Ed 48:4154–4157

    Article  Google Scholar 

  • Sass H-J, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18:303–309

    Article  Google Scholar 

  • Schwalbe H, Grimshaw SB, Spencer A, Buck M, Boyd J, Dobson CM, Redfield C, Smith LJ (2001) A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Prot Sci 10:677–688

    Article  Google Scholar 

  • Smith LJ, Mark AE, Dobson CM, van Gunsteren WF (1995) Comparison of MD simulations and NMR experiments for hen lysozyme. Analysis of local fluctuations, cooperative motions, and global changes. Biochemistry 34:10918–10931

    Article  Google Scholar 

  • Soares TA, Daura X, Oostenbrink C, Smith LJ, van Gunsteren WF (2004) Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme. J Biomol NMR 30:407–422

    Article  Google Scholar 

  • Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  Google Scholar 

  • Tolman JR (2002) A novel approach to the retrieval of structural and dynamic information from residual dipolar couplings using several oriented media in biomolecular NMR spectroscopy. J Am Chem Soc 124:12020–12030

    Article  Google Scholar 

  • Tolman JR (2009) Protein dynamics from disorder. Nature 459:1063–1064

    Article  ADS  Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1997) NMR evidence for slow collective motions in cyanometmyoglobin. Nat Struct Biol 4:292–297

    Article  Google Scholar 

  • Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J Am Chem Soc 125:9179–9191

    Article  Google Scholar 

  • Vaney MC, Maignan S, Riès-Kautt M, Ducruix A (1996) High-resolution structure (1.33 Å) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. Acta Crystallogr D 52:505–517

    Article  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 194:531–544

    Article  Google Scholar 

  • Walsh MA, Schneider TR, Sieker LC, Dauter Z, Lamzin VS, Wilson KS (1998) Refinement of triclinic hen egg-white lysozyme at atomic resolution. Acta Crystallogr D 54:522–546

    Article  Google Scholar 

  • Wöhnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H (2003) Protein alignment by coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339

    Article  Google Scholar 

  • Yao L, Bax A (2007) Modulating protein alignment in a liquid-crystalline medium through conservative mutagenesis. J Am Chem Soc 129:11326–11327

    Article  Google Scholar 

  • Yao L, Vögeli B, Torchia DA, Bax A (2008) Simultaneous NMR study of protein structure and dynamics using conservative mutagenesis. J Phys Chem B 112:6045–6056

    Article  Google Scholar 

  • Zweckstetter M, Bax A (2002) Evaluation of uncertainty in alignment tensors obtained from dipolar couplings. J Biomol NMR 23:127–137

    Article  Google Scholar 

Download references

Acknowledgments

V. A. H. was funded by the BBSRC and St. Peter’s College, Oxford. C. R. was funded by the Wellcome Trust (Grant number 079440).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorna J. Smith or Christina Redfield.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higman, V.A., Boyd, J., Smith, L.J. et al. Residual dipolar couplings: are multiple independent alignments always possible?. J Biomol NMR 49, 53–60 (2011). https://doi.org/10.1007/s10858-010-9457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9457-1

Keywords

Navigation