Skip to main content
Log in

Correlation between 15N NMR chemical shifts in proteins and secondary structure

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

An empirical correlation between the peptide 15N chemical shift, δ15Ni, and the backbone torsion angles φi, ψi−1 is reported. By using two-dimensional shielding surfaces Δ(φiψ1−1), it is possible in many cases to make reasonably accurate predictions of 15N chemical shifts for a given structure. On average, the rms error between experiment and prediction is about 3.5 ppm. Results for threonine, valine and isoleucine are worse (∼4.8 ppm), due presumably to χ1-distribution/γ-gauche effects. The rms errors for the other amino acids are ∼3 ppm, for a typical maximal chemical shift range of ∼15–20 ppm. Thus, there is a significant correlation between 15N chemical shift and secondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abola, E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. and Weng, J. (1987) In Crystallographic Databases: Information Content, Software Systems, Scientific Applications (Eds, Allen, F.H., Bergerhoff, G. and Sievers, R.) Data Commission of the International Union of Crystallography, Cambridge, pp. 107–132.

    Google Scholar 

  • Babu, Y.S., Bugg, C.E. and Cook, W.J. (1988) J. Mol. Biol. 204, 191–204.

    Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., MeyerJr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535–542.

    Google Scholar 

  • Bolin, J.T., Filman, D.J., Mathews, D.A., Hamlin, R.C. and Kraut, J. (1982) J. Biol. Chem., 257, 13650–13662.

    Google Scholar 

  • Carr, M.D., Birdsall, B., Frenkiel, T.A., Baver, C.J., Jimenez-Barbero, J., Polshakov, V.I., McCormick, J.E., Roberts, G.C.K. and Feeney, J. (1991) Biochemistry, 30, 6330–6341.

    Google Scholar 

  • Case, D.A. and Ösapay, K. (1991) J. Am. Chem. Soc., 113, 9436–9444.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1991) Science, 252, 1390–1399.

    Google Scholar 

  • deDios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491–1496.

    Google Scholar 

  • Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 3542–3556.

    Google Scholar 

  • Fairbrother, W.J., PalmerIII, A.G., Rance, M., Reizer, J., SaierJr., M.H. and Wright, P.E. (1992) Biochemistry, 31, 4413–4425.

    Google Scholar 

  • Finzel, B.C., Clancy, L.L., Holland, D.R., Muchmore, S.W., Watenpaugh, K.D. and Einspahr, H.M. (1989) J. Mol. Biol., 209, 779–791.

    Google Scholar 

  • Glushka, J., Lee, M., Coffin, S. and Cowburn, D. (1989) J. Am. Chem. Soc., 111, 7716–7722.

    Google Scholar 

  • Glushka, J., Lee, M., Coffin, S. and Cowburn, D. (1990) J. Am. Chem. Soc., 112, 2843.

    Google Scholar 

  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.

    Google Scholar 

  • Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Nakamura, H., Ikehara, M., Matsuzaki, T. and Morikawa, K. (1992) J. Mol. Biol., 223, 1029–1052.

    Google Scholar 

  • Liao, D.-I., Kapadia, G., Reddy, P., SaierJr., M.H., Reizer, J. and Herzberg, O. (1991) Biochemistry, 30, 9583–9594.

    Google Scholar 

  • Loll, P.J. and Lattman, E.E. (1989) Proteins, 5, 183–201.

    Google Scholar 

  • Martinez-Oyanedel, J., Choe, H.-W., Heinemann, W. and Saenger, W. (1991) J. Mol. Biol., 222, 335–352.

    Google Scholar 

  • Matsumura, M., Wozniak, J.A., Dao-Pin, S. and Mathews, B.W. (1993) Brookhaven Protein Data Bank, file 3LZM.

  • Matsuura, Y., Takano, T. and Dickerson, R.E. (1982) J. Mol. Biol. 156, 389–409.

    Google Scholar 

  • McIntosh, L., Wand, A.J., Lowry, D.F., Redfield, A.G. and Dahlquist, F.W. (1990) Biochemistry, 29, 6341–6362.

    Google Scholar 

  • Nar, H., Messerschmidt, A., Huber, R., Van deKamp, M. and Canters, G.W. (1991) J. Mol. Biol., 257, 13650–13662.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1993) In Calculation of NMR Shielding Constants and Their Use in the Determination of the Geometric and Electronic Structures of Molecules and Solids (Ed, Tossel, J.) Kluwer, Dordrecht, p. 572.

    Google Scholar 

  • Pearson, J.G., Oldfield, E., Lee, F.S. and Warshel, A. (1993) J. Am. Chem. Soc., 115, 6851–6862.

    Google Scholar 

  • Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y. and Roseman, S. (1991) Biochemistry, 30, 10043–10057.

    Google Scholar 

  • Schmidt, J.M., Thüring, H., Werner, A., Rüterjans, H., Quaas, R. and Hahn, U. (1991) Eur. J. Biochem., 197, 643–653.

    Google Scholar 

  • Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217–236.

    Google Scholar 

  • Skelton, N.J., Akke, M., Kördel, J., Thulin, E., Forsen, S. and Chazin, W.J. (1992) FEBS Lett., 303, 136–140.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Svensson, L.A., Thulin, E. and Forsen, S. (1992) J. Mol. Biol., 223, 601–606.

    Google Scholar 

  • Timkovich, R. (1990) Biochemistry, 29, 7773–7780.

    Google Scholar 

  • Tonelli, A.E. (1980) J. Am. Chem. Soc., 102, 7635–7637.

    Google Scholar 

  • Van deKamp, M., Canters, G.W., Wijmenga, S.S., Lommen, A., Hilbers, C., Nar, H., Messerschmidt, A. and Huber, R. (1992) Biochemistry, 31, 10194–10207.

    Google Scholar 

  • VanDuyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. and Clady, J. (1991) Science, 252, 839–842.

    Google Scholar 

  • Wang, J., Hinck, A.P., Loh, S.N., LeMaster, D.M. and Markley, J.L. (1992) Biochemistry, 31, 921–936.

    Google Scholar 

  • Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 83–98.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1992) Biochemistry, 31, 1647–1651.

    Google Scholar 

  • Wlodawer, A., Deisenhofer, J. and Huber, R. (1987) J. Mol. Biol., 193, 145–156.

    Google Scholar 

  • Wolinski, K., Hinton, J.F. and Pulay, P. (1990) J. Am. Chem. Soc., 112, 8251–8260.

    Google Scholar 

  • Worthylake, D., Meadow, N.D., Roseman, S., Liao, D.-I., Herzberg, O. and Remington, S.J. (1991) Proc. Natl. Acad. Sci. USA, 88, 10382–10386.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Xu, R.X., Nettesheim, D., Olejniczak, E.T., Meadows, R., Gemmecker, G. and Fesik, S.W. (1993) Biopolymers, 33, 535–550.

    Google Scholar 

  • Yamazaki, T., Yoshida, M., Kanaya, S., Nakamura, H. and Nagayama, K. (1991) Biochemistry, 30, 6036–6047.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, H., Oldfield, E. Correlation between 15N NMR chemical shifts in proteins and secondary structure. J Biomol NMR 4, 341–348 (1994). https://doi.org/10.1007/BF00179345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00179345

Keywords

Navigation