Skip to main content
Log in

1H–15N correlation spectroscopy of nanocrystalline proteins

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The limits of resolution that can be obtained in 1H–15N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee–Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1H resonances. Heteronuclear decoupling of 15N from the 1H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2H and 15N enriched protein where the amides have been exchanged in normal water, MAS at ∼20 kHz, and WALTZ-16 decoupling of the 15N nuclei. The combination of these techniques results in average 1H lines of only ∼0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15N decoupling are described for achieving the best possible performance in these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.E. Bennett C.M. Rienstra M. Auger K.V. Lakshmi R.G. Griffin (1995) J. Chem. Phys. 103 6951–6958

    Google Scholar 

  • A. Bielecki A.C. Kolbert M.H. Levitt (1989) Chem. Phys. Lett. 155 341–346

    Google Scholar 

  • C.E. Bronnimann B.L. Hawkins M. Zhang G.E. Maciel (1988) Anal. Chem. 60 1743–1750

    Google Scholar 

  • V. Chevelkov B.J. Rossum F. Castellani K. Rehbein A. Diehl M. Hohwy S. Steuernagel F. Engelke H. Oschkinat B. Reif (2003) J. Am. Chem. Soc. 125 7788–7789

    Google Scholar 

  • A. Detken E.H. Hardy M. Ernst B.H. Meier (2002) Chem. Phys. Lett. 356 298–304

    Google Scholar 

  • M. Ernst S. Bush A.C. Kolbert A. Pines (1996) J. Chem. Phys. 105 3387–3397

    Google Scholar 

  • T. Gullion D.B. Baker M.S. Conradi (1990) J. Magn. Reson. 89 479–484

    Google Scholar 

  • A.W. Hing S. Vega J. Schaefer (1992) J. Magn. Reson. 96 205–209

    Google Scholar 

  • Igumenova, T.I. (2003) Assignment of Uniformly 13C Enriched Proteins and Optimization of Their Lineshapes, Ph.D. Thesis, Columbia, New York

  • Y. Ishii J. Ashida T. Terao (1995) Chem. Phys. Lett. 246 439–445

    Google Scholar 

  • H. Kimura K. Nakamura A. Eguchi H. Sugisawa K. Deguchi K. Ebisawa E. Suzuki A. Shoji (1998) J. Mol. Struct. 447 247–255

    Google Scholar 

  • A. Lesage L. Emsley (2001) J. Magn. Reson. 148 449–454

    Google Scholar 

  • J.L. Markley A. Bax Y. Arata C.W. Hilbers R. Kaptein B.D. Sykes P.E. Wright K. Wuthrich (1998) Pure Appl. Chem. 70 117–142

    Google Scholar 

  • R.W. Martin E.K. Paulson K.W. Zilm (2003) Rev. Sci. Instrum. 74 3045–3061

    Google Scholar 

  • R.W. Martin K.W. Zilm (2003) J. Magn. Reson. 165 162–174 Occurrence Handle10.1016/S1090-7807(03)00253-2

    Article  Google Scholar 

  • R.W. Martin K.W. Zilm (2004) J. Magn. Reson. 168 202–209

    Google Scholar 

  • A.E. McDermott F.J. Creuzet A.C. Kolbert R.G. Griffin (1992) J. Magn. Reson. 98 408–413

    Google Scholar 

  • Morcombe, C.R. (2004) Solid State Nuclear Magnetic Resonance of Deuterated Ubiquitin, Ph.D. Thesis, Yale University

  • C.R. Morcombe K.W. Zilm (2003) J. Magn. Reson. 162 479–486

    Google Scholar 

  • S. Neal A.M. Nip H.Y. Zhang D.S. Wishart (2003) J. Biomol. NMR 26 215–240

    Google Scholar 

  • E.T. Olejniczak S. Vega R.G. Griffin (1984) J. Chem. Phys. 81 4804–4817

    Google Scholar 

  • E.K. Paulson C.R. Morcombe V. Gaponenko B. Dancheck R.A. Byrd K.W. Zilm (2003) J. Am. Chem. Soc. 125 15831–15836

    Google Scholar 

  • B. Reif C.P. Jaroniec C.M. Rienstra M. Hohwy R.G. Griffin (2001) J. Magn. Reson. 151 320–327

    Google Scholar 

  • B. Reif B.J. Rossum Particlevan F. Castellani K. Rehbein A. Diehl H. Oschkinat (2003) J. Am. Chem. Soc. 125 1488–1489

    Google Scholar 

  • W.K. Rhim D.D. Elleman Lb. Schreibe R.W. Vaughan (1974) J. Chem. Phys. 60 4595–4604

    Google Scholar 

  • W.K. Rhim D.D. Elleman R.W. Vaughan (1972) Bull. Am. Phys. Soc. 17 1182–1182

    Google Scholar 

  • W.K. Rhim D.D. Elleman R.W. Vaughan (1973) J. Chem. Phys. 59 3740–3749

    Google Scholar 

  • J.E. Roberts S. Vega R.G. Griffin (1984) J. Am. Chem. Soc. 106 2506–2512

    Google Scholar 

  • L.M. Ryan R.E. Taylor A.J. Paff B.C. Gerstein (1980) J. Chem. Phys. 72 508–515

    Google Scholar 

  • I. Schnell B. Langer S.H.M. Sontjens Particlevan M.H.P. Genderen R.P. Sijbesma H.W. Spiess (2001) J. Magn. Reson. 150 57–70

    Google Scholar 

  • B.J. vanRossum F. Castellani J. Pauli K. Rehbein J. Hollander Particlede H.J.M. Groot H. Oschkinat (2003) J. Biomol. NMR 25 217–223

    Google Scholar 

  • B.J. vanRossum H. Forster H.J.M. Groot Particlede (1997) J. Magn. Reson. 124 516–519

    Google Scholar 

  • A.J. Vega (2004) J. Magn. Reson. 170 22–41

    Google Scholar 

  • E. Vinogradov P.K. Madhu S. Vega (1999) Chem. Phys. Lett. 314 443–450

    Google Scholar 

  • E. Vinogradov P.K. Madhu S. Vega (2001) J. Chem. Phys. 115 8983–9000

    Google Scholar 

  • J.S. Waugh L.M. Huber U. Haeberle (1968) Phys. Rev. Lett. 20 180–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt W. Zilm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morcombe, C.R., Paulson, E.K., Gaponenko, V. et al. 1H–15N correlation spectroscopy of nanocrystalline proteins. J Biomol NMR 31, 217–230 (2005). https://doi.org/10.1007/s10858-005-0527-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-0527-8

Key words

Navigation