Skip to main content

Advertisement

Log in

A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling

  • Biomaterials Synthesis and Characterization
  • Review Article
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nowadays, due to a growing number of tissue injuries, in particular, skin wounds, induction and promotion of tissue healing responses can be considered as a crucial step towards a complete regeneration. Recently, biomaterial design has been oriented towards promoting a powerful, effective, and successful healing. Biomaterials with wound management abilities have been developed for different applications such as providing a native microenvironment and supportive matrices that induce the growth of tissue, creating physical obstacles against microbial contamination, and to be used as delivery systems for therapeutic reagents. Until now, numerous strategies aiming to accelerate the wound healing process have been utilized and studied with their own pros and cons. In this review, tissue remodeling phenomena, wound healing mechanisms, and their related factors will be discussed. In addition, different methods for induction and acceleration of healing via cell therapy, bioactive therapeutic delivery, and/or biomaterial-based approaches will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valero C, Javierre E, García-Aznar JM, Menzel A, Gómez-Benito MJ. Challenges in the modeling of wound healing mechanisms in soft biological tissues. Ann Biomed Eng. 2015;43:1654–65.

    CAS  Google Scholar 

  2. Darwin E, Tomic-Canic M. Healing chronic wounds: current challenges and potential solutions. Curr Dermatol Rep. 2018;7:296–302.

    Google Scholar 

  3. Whittam AJ, Maan ZN, Duscher D, Wong VW, Barrera JA, Januszyk M, et al. Challenges and opportunities in drug delivery for wound healing. Adv Wound Care. 2016;5:79–88.

    Google Scholar 

  4. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4:560–82.

    Google Scholar 

  5. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173:370–8.

    CAS  Google Scholar 

  6. Nour S, Baheiraei N, Imani R, Rabiee N, Khodaei M, Alizadeh A, et al. Bioactive materials: a comprehensive review on interactions with biological microenvironment based on the immune response. J Bionic Eng. 2019;16:563–81.

    Google Scholar 

  7. Kassab GS. A systems approach to tissue remodeling. J Biomech Eng. 2009;131:101008.

    Google Scholar 

  8. Desmoulière A, Darby IA, Gabbiani G. Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Investig. 2003;83:1689.

    Google Scholar 

  9. Khalil RA. Matrix metalloproteinases and tissue remodeling in health and disease: target tissues and therapy. Vol. 148. Academic Press; 2017.

  10. Tsafriri A. Ovulation as a tissue remodelling process. In: Tissue renin-angiotensin systems. Springer, Basel, 1995. p. 121–40.

    Google Scholar 

  11. Cowin SC. Tissue growth and remodeling. Annu Rev Biomed Eng 2004;6:77–107.

    CAS  Google Scholar 

  12. Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol-Heart Circulatory Physiol. 2015;309:H543–52.

    CAS  Google Scholar 

  13. Vignola AM, Kips J, Bousquet J. Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol. 2000;105:1041–53.

    CAS  Google Scholar 

  14. Athari SS, Pourpak Z, Folkerts G, Garssen J, Moin M, Adcock IM, et al. Conjugated alpha-alumina nanoparticle with vasoactive intestinal peptide as a nano-drug in treatment of allergic asthma in mice. Eur J Pharmacol. 2016;791:811–20.

    CAS  Google Scholar 

  15. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786.

    CAS  Google Scholar 

  16. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115:3719–27.

    CAS  Google Scholar 

  17. Caley MP, Martins VLC, O’Toole EA. Metalloproteinases and Wound Healing. Adv Wound Care. 2015;4:225–34.

    Google Scholar 

  18. Van Goor H, Melenhorst WB, Turner AJ, Holgate ST. Adamalysins in biology and disease. J Pathol. 2009;219:277–86.

    Google Scholar 

  19. Sterchi EE, Stöcker W, Bond JS. Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Asp Med. 2008;29:309–28.

    CAS  Google Scholar 

  20. Benjamin MM, Khalil RA. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. In: Matrix metalloproteinase inhibitors. Springer, Basel, 2012. p. 209–79.

    Google Scholar 

  21. Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors — novel strategies bring new prospects. Biochimica et Biophysica Acta. 2017;1864:1927–39.

    CAS  Google Scholar 

  22. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Models Mechanisms. 2011;4:165–78.

    CAS  Google Scholar 

  23. Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen A-C, et al. Extracellular matrix remodeling: the common denominator in connective tissue diseases possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol. 2013;11:70–92.

    CAS  Google Scholar 

  24. Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol. 2013;229:298–309.

    CAS  Google Scholar 

  25. Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochimica et Biophysica Acta. 2017;1863:298–309.

    CAS  Google Scholar 

  26. Viennet C, Muret P. Fibroblast evaluation: extracellular matrix synthesis. In: Measuring the Skin. Springer, Cham, 2016. p. 1–5.

  27. Kasetti RB, Maddineni P, Millar JC, Clark AF, Zode GS. Increased synthesis and deposition of extracellular matrix proteins leads to endoplasmic reticulum stress in the trabecular meshwork. Sci Rep. 2017;7:14951.

    Google Scholar 

  28. Andreeva ER, Buravkova LB. The role of interplay of mesenchymal stromal cells and macrophages in physiological and reparative tissue remodeling. Hum Physiol. 2018;44:102–14.

    CAS  Google Scholar 

  29. Gonzalez ACdO, Costa TF, Andrade ZdA, Medrado ARAP. Wound healing - a literature review. An Brasileiros de Dermatologia. 2016;91:614–20.

    Google Scholar 

  30. Reddi AH. Chapter 11 - Morphogenesis and tissue engineering. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering (fourth edition). Boston: Academic Press; 2014. p. 209–23.

    Google Scholar 

  31. Ikada Y (editor). Chapter 4 - Challenges in tissue engineering. Interface science and technology. Vol. 8. Elsevier, 2006; p. 423–62.

  32. Mammoto T, Ingber DE. Mechanical control of tissue and organ development. Development. 2010;137:1407–20.

    CAS  Google Scholar 

  33. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res 2017;58:81–94.

    Google Scholar 

  34. Lisovsky A, Chamberlain MD, Wells LA, Sefton MV. Cell interactions with vascular regenerative MAA-based materials in the context of wound healing. Adv Healthc Mater. 2015;4:2375–87.

    CAS  Google Scholar 

  35. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Therapeutics. 2017;34:599–610.

    Google Scholar 

  36. Alvarez MM, Liu JC, Santiago GT-d, Cha B-H, Vishwakarma A, Ghaemmaghami AM, et al. Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications. J Controlled Release. 2016;240:349–63.

    CAS  Google Scholar 

  37. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73:3861–85.

    Google Scholar 

  38. Minutti CM, Knipper JA, Allen JE, Zaiss DMW. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol. 2017;61:3–11.

    CAS  Google Scholar 

  39. Hu S, De Vos P. Polymeric approaches to reduce tissue responses against devices applied for islet-cell encapsulation. Front Bioeng Biotechnol. 2019;7:134.

  40. Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2018;5:pii: S0169-409X(18)30158-3.

    Google Scholar 

  41. Shaw TJ, Martin P. Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol. 2016;42:29–37.

    CAS  Google Scholar 

  42. Keane TJ, Horejs CM, Stevens MM. Scarring vs. functional healing: matrix-based strategies to regulate tissue repair. Adv Drug Deliv Rev. 2018;129:407–19.

    CAS  Google Scholar 

  43. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharmacuetical Sci. 2008;97:2892–923.

    CAS  Google Scholar 

  44. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63:300–11.

    CAS  Google Scholar 

  45. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    CAS  Google Scholar 

  46. Renault M, Roncalli J, Tongers J, Klyachko E, Misener S, Volpert OV, et al. Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol. 2011;49:490–8.

    Google Scholar 

  47. Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov. 2016;15:125–42.

    CAS  Google Scholar 

  48. Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014;10:4156–66.

    CAS  Google Scholar 

  49. Leonida MD, Kumar I. Bionanomaterials for Skin Regeneration. Cham: Springer International Publishing; 2016.

    Google Scholar 

  50. Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl. 2015;48:651–62.

    CAS  Google Scholar 

  51. Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10:111.

    Google Scholar 

  52. Dash BC, Xu Z, Lin L, Koo A, Ndon S, Berthiaume F, et al. Stem cells and engineered scaffolds for regenerative wound healing. Bioengineering. 2018;5:pii: E23.

    Google Scholar 

  53. Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther. 2016;7:37.

    Google Scholar 

  54. Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol. 2017;37:613–25.

    CAS  Google Scholar 

  55. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. 2016;62:216–25.

    CAS  Google Scholar 

  56. Ozpur MA, Guneren E, Canter HI, Karaaltin MV, Ovali E, Yogun FN, et al. Generation of Skin tissue using adipose tissue-derived stem cells. Plast Reconstr Surg. 2016;137:134–43.

    CAS  Google Scholar 

  57. Cerqueira MT, da Silva LP, Santos TC, Pirraco RP, Correlo VM, Reis RL, et al. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl Mater Interfaces. 2014;6:19668–79.

    CAS  Google Scholar 

  58. Battiston KG, Cheung JW, Jain D, Santerre JP. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials. 2014;35:4465–76.

    CAS  Google Scholar 

  59. Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG. Bioactive polymeric scaffolds for tissue engineering. Bioact Mater. 2016;1:93–108.

    Google Scholar 

  60. Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication. 2016;8:014103.

    Google Scholar 

  61. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109:1855–63.

    CAS  Google Scholar 

  62. Ho J, Walsh C, Yue D, Dardik A, Cheema U. Current advancements and strategies in tissue engineering for wound healing: a comprehensive review. Adv Wound Care. 2017;6:191–209.

    Google Scholar 

  63. Korrapati PS, Karthikeyan K, Satish A, Krishnaswamy VR, Venugopal JR, Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater Sci Eng C Mater Biol Appl. 2016;67:747–65.

    CAS  Google Scholar 

  64. Hormozi M, Assaei R, Boroujeni MB. The effect of aloe vera on the expression of wound healing factors (TGFbeta1 and bFGF) in mouse embryonic fibroblast cell: In vitro study. Biomed Pharmacother. 2017;88:610–6.

    CAS  Google Scholar 

  65. Klempaiová M, Dragúňová J, Kabát P, Hnátová M, Koller J, Bakoš D. Cytotoxicity testing of a polyurethane nanofiber membrane modified with chitosan/β-cyclodextrin/berberine suitable for wound dressing application: evaluation of biocompatibility. Cell Tissue Bank. 2016;17:665–75.

    Google Scholar 

  66. Khezri K, Farahpour MR, Mounesi Rad S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif Cells, Nanomed, Biotechnol. 2019;47:980–8.

    Google Scholar 

  67. Dadras Chomachayi M, Solouk A, Akbari S, Sadeghi D, Mirahmadi F, Mirzadeh H. Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res Part A. 2018;106:1092–103.

    CAS  Google Scholar 

  68. Garcia-Orue I, Gainza G, Gutierrez FB, Aguirre JJ, Evora C, Pedraz JL, et al. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharmaceutics. 2017;523:556–66.

    CAS  Google Scholar 

  69. Oryan A, Mohammadalipour A, Moshiri A, Tabandeh MR. Topical application of aloe vera accelerated wound healing, modeling, and remodeling. Ann Plast Surg. 2016;77:37–46.

    CAS  Google Scholar 

  70. El-Kased RF, Amer RI, Attia D, Elmazar MM. Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Sci Rep. 2017;7:9692.

    Google Scholar 

  71. Dwivedi C, Pandey I, Pandey H, Patil S, Mishra SB, Pandey AC, et al. In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor. J Biomed Mater Res Part A. 2018;106:641–51.

    CAS  Google Scholar 

  72. Zahedi P, Fallah-Darrehchi MJF. Electrospun egg albumin-PVA nanofibers containing tetracycline hydrochloride: morphological, drug release, antibacterial, thermal and mechanical properties. Fibers and Polymers. 2015; 16, 2184–92.

    CAS  Google Scholar 

  73. López-Iglesias C, Barros J, Ardao I, Monteiro FJ, Alvarez-Lorenzo C, Gómez-Amoza JL, et al. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr Polym. 2019;204:223–31.

    Google Scholar 

  74. Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, et al. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomaterialia. 2015;18:196–205.

    CAS  Google Scholar 

  75. Jin H, Zhang Z, Wang C, Tang Q, Wang J, Bai X, et al. Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice. Exp Mol Med. 2018;50:154.

    Google Scholar 

  76. Asai J, Takenaka H, Hirakawa S, Sakabe J, Hagura A, Kishimoto S, et al. Topical simvastatin accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis. Am J Pathol. 2012;181:2217–24.

    CAS  Google Scholar 

  77. Elsherbiny A, Hogger DC, Borozadi MK, Schmidt CA, Plock J, Largo RD, et al. EPO reverses defective wound repair in hypercholesterolaemic mice by increasing functional angiogenesis. J Plast Reconstr Aesthet Surg. 2012;65:1559–68.

    Google Scholar 

  78. Ghayempour S, Montazer M, Mahmoudi Rad M. Encapsulation of aloe vera extract into natural tragacanth gum as a novel green wound healing product. Int J Biol Macromol. 2016;93:344–9.

    CAS  Google Scholar 

  79. Bui VKH, Park D, Lee YC. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers. 2017;9:21.

    Google Scholar 

  80. Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev. 2015;88:16–36.

    CAS  Google Scholar 

  81. Laiva AL, O’Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med. 2018;12:e296–312.

    CAS  Google Scholar 

  82. Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials. 2019;216:119267.

    CAS  Google Scholar 

  83. Martin JR, Nelson CE, Gupta MK, Yu F, Sarett SM, Hocking KM, et al. Local delivery of PHD2 siRNA from ROS-degradable scaffolds to promote diabetic wound healing. Adv Health Mater. 2016;5:2751–7.

    CAS  Google Scholar 

  84. Yildirimer L, Thanh NT, Seifalian AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 2012;30:638–48.

    CAS  Google Scholar 

  85. Peplow PV, Baxter GD. Gene expression and release of growth factors during delayed wound healing: a review of studies in diabetic animals and possible combined laser phototherapy and growth factor treatment to enhance healing. Photomed Laser Surg. 2012;30:617–36.

    CAS  Google Scholar 

  86. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601.

    Google Scholar 

  87. Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, et al. Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem. 2015;36:1–23.

    CAS  Google Scholar 

  88. Ali Khan Z, Jamil S, Akhtar A, Mustehsan Bashir M, Yar M. Chitosan based hybrid materials used for wound healing applications- a short review. Int J Polym Mater Polym Biomater. 2019;68:1–18.

  89. Mogosanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463:127–36.

    CAS  Google Scholar 

  90. Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Health Mater. 2015;4:1114–33.

    CAS  Google Scholar 

  91. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1:792–802.

    CAS  Google Scholar 

  92. Chen F-M, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–68.

    CAS  Google Scholar 

  93. Imani R, Yousefzadeh M, Nour S. Functional nanofiber for drug delivery applications. In: Barhoum A, Bechelany M, Makhlouf A, editors. Handbook of nanofibers. Cham: Springer International Publishing; 2018. p. 1–55.

    Google Scholar 

  94. Liu M, Duan XP, Li YM, Yang DP, Long YZ. Electrospun nanofibers for wound healing. Mater Sci Eng C Mater Biol Appl. 2017;76:1413–23.

    CAS  Google Scholar 

  95. Chou S-F, Gunaseelan S, Kiellani MHH, Thottempudi VVK, Neuenschwander P, Nie H. A review of injectable and implantable biomaterials for treatment and repair of soft tissues in wound healing. J Nanotechnol. 2017;2017:1–15.

    Google Scholar 

  96. Pereira RF, Barrias CC, Granja PL, Bartolo PJ. Advanced biofabrication strategies for skin regeneration and repair. Nanomed. 2013;8:603–21.

    CAS  Google Scholar 

  97. Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev. 2018;127:167–84.

    CAS  Google Scholar 

  98. Tang Z, Okano T. Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regenerative Biomater. 2014;1:91–102.

    Google Scholar 

  99. Chen H, Guo L, Wicks J, Ling C, Zhao X, Yan Y, et al. Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. J Mater Chem B. 2016;4:3770–81.

    CAS  Google Scholar 

  100. Huang J, Chen L, Gu Z, Wu J. Red jujube-incorporated gelatin methacryloyl (GelMA) hydrogels with anti-oxidation and immunoregulation activity for wound healing. J Biomed Nanotechnol. 2019;15:1357–70.

    Google Scholar 

  101. Huang J, Chen L, Yuan Q, Gu Z, Wu J. Tofu-based hybrid hydrogels with antioxidant and low immunogenicity activity for enhanced wound healing. J Biomed Nanotechnol. 2019;15:1371–83.

    Google Scholar 

  102. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater. 2015;14:737–44.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nafiseh Baheiraei or S. Mohammad Moazzeni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publishers note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nour, S., Baheiraei, N., Imani, R. et al. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. J Mater Sci: Mater Med 30, 120 (2019). https://doi.org/10.1007/s10856-019-6319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6319-6

Navigation