Skip to main content

Advertisement

Log in

Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0−1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma WJ, Ruys A, Mason RS, Martin PJ, Bendavid A, Liu Z, Ionescu M, Zreiqat H. DLC coatings: Effect of physical and chemical properties on biological response. Biomaterials. 2007;28:1620–1628.

    Article  Google Scholar 

  2. Hinüber C, Kleeman C, Friederichs RJ, Haubold L, Scheibe HJ, Schuelke T, Boehlert C, Baumann MJ. Biocompatibility and mechanical properties of diamond-like coating on cobalt-chromium-molybdenum steel and titanium-aluminium-vanadium biomedical alloys. J Biomed Mater Res Part A. 2010;95A:388–400.

    Article  Google Scholar 

  3. Alakoski E, Tiainen VM, Soininen A, Konttinen YT. Load-bearing biomedical applications of diamond-like carbon coatings-current status. Open Orthop J. 2008;2:43–50.

    Article  Google Scholar 

  4. Chai F, Mathis N, Blanchemain N, Meunier C, Hildebrand HF. Osteoblast interaction with DLC-coated Si substrates. Acta Biomater. 2008;4:1369–1381.

    Article  Google Scholar 

  5. Roy RK, Lee KR. Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater. 2007;83B:72–84.

    Article  Google Scholar 

  6. Liu C, Zhao Q, Liu Y, Wang S, Abel EW. Reduction of bacterial adhesion on modified DLC coatings. Colloid Surf B. 2008;61:182–187.

    Article  Google Scholar 

  7. Hauert R. A review of modified DLC coatings for biological applications. Diam Relat Mater. 2003;12:583–589.

    Article  Google Scholar 

  8. Hasebe T, Shimada A, Suzuki T, Matsuoka Y, Saito T, Yohena S, Kamijo A, Shiraga N, Higuchi M, Kimura K, Yoshimura H, Kuribayashi S. Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. J Biomed Mater Res. 2006;76A:86–94.

    Article  Google Scholar 

  9. Kwok SCH, Ha PCT, McKenzie DR, Bilek MMM, Chu PK. Biocompatibility of calcium and phosphorus doped diamond-like carbon thin films synthesized by plasma immersion ion implantation and deposition. Diam Relat Mater. 2006;15:893–897.

    Article  Google Scholar 

  10. Morrison ML, Buchanan BA, Liaw PK, Berry CJ, Brigmon RL, Riester L, Abernathy H, Jin C, Narayan RJ. Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films. Diam Relat Mater. 2006;15:138–146.

    Article  Google Scholar 

  11. Hang R, Zhang M, Ma S, Chu PK. Biological response of endothelial cells to diamond-like carbon-coated NiTi alloy. J Biomed Mater Res Part A. 2012;100A:496–506.

    Article  Google Scholar 

  12. Paul JP. Forces actions transmitted by joints in the human body. Proc R Soc Lond B Biol Sci. 1976;192:163–172.

    Article  Google Scholar 

  13. Dai W, Wu G, Wang A. Preparation, characterization and properties of Cr-incorporated DLC films on magnesium alloy. Diam Relat Mater. 2010;19:1307–1315.

    Article  Google Scholar 

  14. Tsai P-C, Hwang Y-F, Chiang J-Y, Chen W-J. The effects of deposition parameters on the structure and properties of titanium-containing DLC films synthesized by cathodic arc plasma evaporation. Surf Coat Technol. 2008;202:5350–5355.

    Article  Google Scholar 

  15. Vinnichenko M, Gago R, Huang N, Leng YX, Sun H, Kreissig U, Kulish MP, Maitz MF. Spectroscopic ellipsometry investigation of amorphous carbon films with different sp3 content: relation with protein adsorption. Thin Solid Films. 2004;455-456:530–534.

    Article  Google Scholar 

  16. Goodman SL, Cooper SL, Albrecht RM. The effects of adsorbed albumin on platelet spreading. J Biomed Sci Polym. 1991;2:147–159.

    Article  Google Scholar 

  17. Allen A, Myer B, Rushton N. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coating for orthopaedic applications. J Biomed Mater Res Appl Biomater. 2001;58:319–328.

    Article  Google Scholar 

  18. Haney JT Jr., Erraguntla N, Sielken RL Jr., Valdez-Flores C. Development of an inhalation unit risk factor for hexavalent chromium. Regul Toxicol Pharmacol. 2014;68:201–211.

    Article  Google Scholar 

  19. Costa M. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol. 1997;27:431–442.

    Article  Google Scholar 

  20. Jelinek M, Kocourek T, Zemek J, Mikšovský J, Kubinová Š, Remsa J, Kopeček J, Jurek K. Chromium-doped DLC for implants prepared by laser-magnetron deposition. Mater Sci Eng C Mater Biol Appl. 2015;46:381–386.

    Article  Google Scholar 

  21. Jelinek M, Zemek J, Vandrovcová M, Bačáková L, Kocourek T, Remsa J, Písařík P. Bonding and bio- properties of hybrid laser Cr- doped DLC. Mater Sci Eng C Mater Biol Appl. 2016;58:1217–1224.

    Article  Google Scholar 

  22. Reseland JE, Reppe S, Larsen AM, Berner HS, Reinholt FP, Gautvik KM, Slaby I, Lyngstadaas SP. The effect of enamel matrix derivative on gene expression in osteoblasts. Eur J Oral Sci. 2006;114(Suppl. 1):205–211.

    Article  Google Scholar 

  23. Franke S, Siggelkow H, Wolf G, Hein G. Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem. 2007;113:154–161.

    Article  Google Scholar 

  24. Zhang L, Ren X, Alt E, Bai X, Huang S, Xu Z, Lynch PM, Moyer MP, Wen X-F, Wu X. Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature. 2010;464:1058–1061.

    Article  Google Scholar 

  25. Frank O, Heim M, Jakob M, Barbero A, Schafer D, Bendik I, Dick W, Heberer M, Martin I. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem. 2002;85:737–746.

    Article  Google Scholar 

  26. Altman DG, Bland JM. Standard deviations and standard errors. BMJ. 2005;331:903

    Article  Google Scholar 

  27. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE Guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry. 2009;55:611–622.

    Article  Google Scholar 

  28. Písařík P, Jelínek M, Kocourek T, Zezulová M, Remsa J, Jurek K. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition. Appl Phys A. 2014;117:83–88.

    Article  Google Scholar 

  29. Saldaña L, Bensiamar F, Boré A, Vilaboa N. In search of representative models of human bone-forming cells for cytocompatibility studies. Acta Biomater. 2011;7(12):4210–21.

    Article  Google Scholar 

  30. Czekanska EM, Stoddart MJ, Richards RG, Hayes JS. In search of an osteoblast cell model for in vitro research. European Cells and Materials. 2012;24:1–17.

    Article  Google Scholar 

  31. Born AK, Rottmar M, Lischer S, Pleckova M, Bruinink A, Maniura-Weber K. Correlation cell architecture with osteogenesis: first steps towards live single cell monitoring. Eur Cells Mater. 2009;18:49–62.

    Google Scholar 

  32. Gong Z, Wezeman FH. Inhibitory effect of alcohol on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Alcohol Clin Exp Res. 2004;28:468–479.

    Article  Google Scholar 

  33. Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol. 2010;658:43–49.

    Article  Google Scholar 

  34. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.

    Article  Google Scholar 

  35. Costa AN, Moreno V, Prieto MJ, Urbano AM, Alpoim MC. Induction of morphological changes in BEAS-2B human bronchial epithelial cells following chronic sub-cytotoxic and mildly cytotoxic hexavalent chromium exposures. Mol Carcinog. 2010;49:582–591.

    Google Scholar 

  36. Sun H, Clancy HA, Kluz T, Zavadil J, Costa M. Comparison of gene expression profiles in chromate transformed BEAS-2B cells. PLoS One. 2011;6:e17982

    Article  Google Scholar 

  37. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–767.

    Article  Google Scholar 

  38. Allen A, Law F, Rushton N. The effect of diamond-like carbon coatings on macrophages, fibroblasts and osteoblast-like cells in vitro. Clin Mater. 1994;17:1–10.

    Article  Google Scholar 

  39. Butter R, Allen M, Chandra L, Lettington AH, Rushton N. In vitro studies of DLC coatings with silicon intermediate layer. Diam Relat Mater. 1995;4:857–861.

    Article  Google Scholar 

  40. Bacakova L, Walachova K, Svorcik V, Hnatowicz V. Adhesion and proliferation of rat vascular smooth muscle cells (VSMC) on polyethylene implanted with O+ and C+ ions. J Biomater Sci Polym Ed. 2001;12:817–834.

    Article  Google Scholar 

  41. Randeniya LK, Bendavid A, Martin PJ, Amin MS, Rohanizadeh R, Tang F, Cairney JM. Thin-film nanocomposites of diamond-like carbon and titanium oxide; osteoblast adhesion and surface properties. Diam Relat Mater. 2010;19:329–335.

    Article  Google Scholar 

  42. Pritchard DE, Ceryak S, Ramsey KE, O’Brien TJ, Ha L, Fornsaglio JL, Stephan DA, Patierno SR. Resistance to apoptosis, increased growth potential, and altered gene expression in cells that survived genotoxic hexavalent chromium [Cr(VI)] exposure. Mol Cell Biochem. 2005;279:169–181.

    Article  Google Scholar 

  43. Martini CN, Brandani JN, Gabrielli M, Vila M delC. Effect of hexavalent chromium on proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. Toxicol In Vitro. 2014;28:700–706.

    Article  Google Scholar 

  44. Nigam A, Priya S, Bajpai P, Kumar S. Cytogenomics of hexavalent chromium (Cr 6+) exposed cells: a comprehensive review. Indian J Med Res. 2014;139:349–70.

    Google Scholar 

  45. Allen MJ, Myer BJ, Millett PJ, Rushton N. The effect of particulate cobalt, chromium and cobalt-chromium alloy on human osteoblast-like cells in vitro. J Bone Joint Surg. 1997;79-B:475–482.

    Article  Google Scholar 

  46. Francz G, Schroeder A, Hauert R. Surface analysis and bioreactors of Ti- and V- containing a-C: H. Surf Interface Anal. 1999;28:3–7.

    Article  Google Scholar 

  47. Ganguly R, Sahu S, Chavez RJ, Raman P. Trivalent chromium inhibits TSP-1 expression, proliferation, and O-GlcNAc signaling in vascular smooth muscle cells in response to high glucose in vitro. Am J Physiol Cell Physiol. 2015;308:C111–22.

    Article  Google Scholar 

  48. Sheeja D, Tay BK, Lau SP, Shi X, Shi J, Li Y, Ding X, Liu E, Sun Z. Characterization of ta-C films prepared by a two-step filtered vacuum arc deposition technique. Surf Coat Technol. 2000;127:247–251.

    Article  Google Scholar 

  49. Choi HW, Dauskardt RH, Lee S, Lee K, Oh KH. Characteristics of silver doped DLC films on surface properties and protein adsorption. Diam Rel Mater. 2008;17:252–257.

    Article  Google Scholar 

  50. Xiang Y, Cheng-biao W, Yang L, De-yang Y, Zhi-qiang F. Cr-doped DLC films in three mid-frequency dual magnetron power modes. Surf Coat Technol. 2006;200:6765–6769.

    Article  Google Scholar 

  51. Wei Q, Sharma AK, Sankar J, Narayan J. Mechanical properties of diamond-like carbon composite thin film prepared by pulsed laser deposition. Compos Part B. 1999;30:675–684.

    Article  Google Scholar 

  52. Catledge SA, Thomas V, Vohra YK. Nanostructured diamond coatings for orthopaedic applications. Woodhead Publ Ser Biomater. 2013;2013:105–150.

    Google Scholar 

  53. Kalbacova M, Rezek B, Baresova V, Wolf-Brandstetter C, Kromka A. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts. Acta Biomater. 2009;5:3076–3085.

    Article  Google Scholar 

  54. Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater. 2015;11:494–502.

    Article  Google Scholar 

  55. Feller L, Jadwat Y, Khammissa RAG, Meyerov R, Schechter I, Lemmer J. Cellular responses evoked by different surface characteristics of intraosseous titanium implants. Biomed Res Int. 2015;2015:171945

    Article  Google Scholar 

  56. Flamant Q, Stanciuc AM, Pavailler H, Sprecher CM, Alini M, Peroglio M, Anglada M. Roughness gradient on zirconia for rapid screening of cell-surface interactions: fabrication, characterization and application. J Biomed Mater Res Part A. 2016;104A:2502–2514.

    Article  Google Scholar 

  57. Vandrovcova M, Hanus J, Drabik M, Kylian O, Biederman H, Lisa V, Bacakova L. Effect of different surface nanoroughness of titanium dioxide films on the growth of human osteoblast-like MG63 cells. J Biomed Mater Res Part A. 2012;100A:1016–1032.

    Article  Google Scholar 

  58. Filova E, Fojt J, Kryslova M, Moravec H, Joska L, Bacakova L. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Int J Nanomedicine. 2015;10:7145–7163.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (grants 15-05864S and 14-04790S), by the Grant Agency of the Czech Technical University in Prague (grant No. SGS14/168/OHK4/2T/17), and by the “BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund. The authors thank Mrs. Ivana Zajanova (Inst. Physiol., Acad. Sci. CR, Prague) for her help with immunofluorescence staining, Mrs. Paula Solon (University of New York in Prague) and Mr. Robin Healey (Czech Technical University in Prague) for their language revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Vandrovcova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filova, E., Vandrovcova, M., Jelinek, M. et al. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings. J Mater Sci: Mater Med 28, 17 (2017). https://doi.org/10.1007/s10856-016-5830-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5830-2

Keywords

Navigation