Skip to main content
Log in

Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, nanocomposites of Fe-doped TiO2 with multi-walled carbon nanotubes (0.1– 0.5 wt. %) were prepared by using sol–gel method. The structural and morphological analysis were carried out with using X-ray diffraction pattern and transmission electron microscopy, which confirm the presence of pure anatase phase and particle sizes in the range 15–20 nm. X-ray photoelectron spectroscopy was used to determine the surface compositions of the nanocomposites. UV–vis diffuse reflectance spectra confirm redshift in the optical absorption edge of nanocomposites with increasing amount of multi-walled carbon nanotubes. Nanocomposites show photoinactivation against gram-positive Bacillus subtilis as well as gram-negative Pseudomonas aeruginosa. Fe-TiO2-multi-walled carbon nanotubes (0.5 wt. %) nanocomposites show higher photoinactivation capability as compared with other nanocomposites. The photoluminescence study reveals that the Fe-TiO2-multi-walled carbon nanotubes nanocomposites are capable to generate higher rate of reactive oxygen species species than that of other nanocomposites. Our experimental results demonstrated that the Fe-TiO2-multi-walled carbon nanotubes nanocomposites act as efficient antibacterial agents against a wide range of microorganisms to prevent and control the persistence and spreading of bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Pant B, Pant HR, Barakat NAM, Park M, Jeon K, Choi Y, et al. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram Int. 2013;39:7029–35.

    Article  Google Scholar 

  2. Rajasekar K, Thennarasu S, Rajesh R, Abirami R, Balkis Ameen K, Ramasubbu A. Preparation of mesoporous TiO2/CNT nanocomposites by synthesis of mesoporous titania via EISA and their photocatalytic degradation under visible light irradiation. Solid State Sci. 2013;26:45–52.

    Article  Google Scholar 

  3. Li H, Zhang X, Huo Y, Zhu J. Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ Sci Technol. 2007;41:4410–4.

    Article  Google Scholar 

  4. Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, et al. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010;3:244–55.

    Article  Google Scholar 

  5. Fan W, Lai Q, Zhang Q, Wang Y. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C. 2011;115:10694–701.

    Article  Google Scholar 

  6. Kubacka A, Serrano C, Ferrer M, Lunsdorf H, Bielecki P, Cerrada ML, et al. High-performance dual-action polymer-TiO2 nanocomposite films via melting processing. Nano Lett. 2007;7:2529–34.

    Article  Google Scholar 

  7. Yadav HM, Otari SV, Koli VB, Mali SS, Hong CK, Pawar SH, et al. Preparation and characterization of copper–doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol A Chem. 2014;280:32–38.

    Article  Google Scholar 

  8. Barkul RP, Koli VB, Shewale VB, Patil MK, Delekar SD. Visible active nanocrystalline N-doped anatase TiO2 particles for photocatalytic mineralization studies. Mater Chem Phys 2016;173:1–10.

  9. Koli VB, Dhodamani AG, Raut AV, Thorat ND, Pawar SH, Delekar SD. Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs. J Photochem Photobiol A Chem. 2016;328:50–8.

    Article  Google Scholar 

  10. Thostenson ET, Li C, Chou TW. Nanocomposites in context. Compos Sci Technol. 2005;65:491–516.

    Article  Google Scholar 

  11. Lau KT, Gu C, Hui D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos Part B Eng. 2006;37:425–36.

    Article  Google Scholar 

  12. Zhang K, Kemp KC, Chandra V. Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett. 2012;81:127–30.

    Article  Google Scholar 

  13. Xu Y, Zhuang Y, Fu X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange. J Phys Chem C. 2010;114:2669–76.

    Article  Google Scholar 

  14. Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A. Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng. 2014;8:1–12.

  15. Mali SS, Betty CA, Bhosale PN, Patil PS. Synthesis, characterization of hydrothermally grown MWCNT-TiO2 photoelectrodes and their visible light absorption properties. ECS J Solid State Sci Technol. 2012;1:M15–23.

    Article  Google Scholar 

  16. Yu H, Quan X, Chen S, Zhao H. TiO2 - Multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C. 2007;111:12987–91.

  17. Wang W, Serp P, Kalck P, Faria JL. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J Mol Catal A Chem. 2005;235:194–9.

    Article  Google Scholar 

  18. Akhavan O, Azimirad R, Safa S, Larijani MM. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J Mater Chem. 2010;20:7386

    Article  Google Scholar 

  19. Oh W-C, Jung A-R, Ko W-B. Preparation of fullerene/TiO2 composite and its photocatalytic effect. J Ind Eng Chem. 2007;13:1208–14.

    Google Scholar 

  20. Ma PC, Tang BZ, Kim JK. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon N Y. 2008;46:1497–505.

    Article  Google Scholar 

  21. Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X. Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mater Interfaces. 2015;7:2280–5.

    Article  Google Scholar 

  22. Da Dalt S, Alves AK, Bergmann CP. Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Mater Res Bull. 2013;48:1845–50.

    Article  Google Scholar 

  23. Amna T, Hassan MS, Barakat NAM, Pandeya DR, Hong ST, Khil MS, et al. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microbiol Biotechnol. 2012;93:743–51.

    Article  Google Scholar 

  24. Chawengkijwanich C, Hayata Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol. 2008;123:288–92.

    Article  Google Scholar 

  25. Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett. 1985;29:211–4.

    Article  Google Scholar 

  26. Chen F, Yang X, Wu Q. Antifungal capability of TiO2 coated film on moist wood. Build Environ. 2009;44:1088–93.

    Article  Google Scholar 

  27. Zan L, Fa W, Peng T, Gong ZK. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. J Photochem Photobiol B Biol. 2007;86:165–9.

    Article  Google Scholar 

  28. Lu Z, Zhou L, Zhang Z, Shi W, Xie Z. Cell damage induced by photocatalysis of TiO2 thin films. 2003;19:8765–8.

  29. Delekar SD,  Yadav HM,  Achary  SN,  Meena  SS,  Pawar SH. Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. App Surf Sci. 2012;263;536-545. 

    Article  Google Scholar 

  30. Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, et al. TiO2 (Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films. 2003;433:186–90.

    Article  Google Scholar 

  31. Egerton TA, Kosa SAM, Christensen PA. Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Phys Chem Chem Phys. 2006;8:398–406.

    Article  Google Scholar 

  32. Ashkarran AA, Fakhari M, Mahmoudi M. Synthesis of a solar photo and bioactive CNT–TiO2 nanocatalyst. RSC Adv. 2013;3:18529

    Article  Google Scholar 

  33. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, et al. Hydrothermal Synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012;2:949–956.

    Article  Google Scholar 

  34. Ramar A, Soundappan T. Incorporation of multi-walled carbon nanotubes in ZnO for dye sensitized solar cells. Int J Electrochem Sci. 2012;7:11734–44.

    Google Scholar 

  35. Yadav HM, Kolekar TV, Barge AS, Thorat ND, Delekar SD, Kim BM, et al. Enhanced visible light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol–gel method. J Mater Sci Mater Electron. 2015;27:526

    Article  Google Scholar 

  36. Yadav HM, Otari SV, Bohara RA, Mali SS, Pawar SH, Delekar SD. Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against gram-positive and gram-negative bacteria. J Photochem Photobiol A Chem. 2014;294:130–6.

    Article  Google Scholar 

  37. Feng W, Feng Y, Wu Z, Fujii A, Ozaki M, Yoshino K. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes. J Phys Condens Matter. 2005;17:4361–8.

    Article  Google Scholar 

  38. Chen L, Pang X, Yu G, Zhang J. In-situ coating of MWNTs with sol- gel TiO2 nanoparticles. Adv Mater Lett. 2010;1:75–8.

    Article  Google Scholar 

  39. Gupta K, Singh RP, Pandey A, Pandey A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. Aureus. P. Aeruginosa and E. Coli. Beilstein J Nanotechnol. 2013;4:345–51.

    Article  Google Scholar 

  40. Yu J, Ma T, Liu S. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys. 2011;13:3491–501.

    Article  Google Scholar 

  41. Saleh Ta, Gupta VK. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci. 2012;371:101–6.

    Article  Google Scholar 

  42. Dahl M, Liu Y, Yin Y. Composite titanium dioxide nanomaterials. Chem Rev. 2014;114:9853–89.

    Article  Google Scholar 

  43. Zhu J, Chen F, Zhang J, Chen H, Anpo M. Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem. 2006;180:196–204.

    Article  Google Scholar 

  44. Gu D, Lu Y, Yang B, Hu Y. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition. Chem Commun. 2008;2453–5.

  45. Hsu HC, Shown I, Wei HY, Chang YC, Du H-Y, Lin Y-G, et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale. 2012;262–8.

  46. Yan X, Tay BK, Yang Y. Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 sol. J Phys Chem B. 2006;110:25844–9.

    Article  Google Scholar 

  47. Vilian ATE, Veeramani V, Chen S-M, Madhu R, Kwak CH, Huh YS, et al. Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor. Sci Rep. 2015;5:18390

    Article  Google Scholar 

  48. Abazović ND, Mirenghi L, Janković IA, Bibić N, Šojić DV, Abramović BF, et al. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions. Nanoscale Res Lett. 2009;4:518–25.

    Article  Google Scholar 

  49. Anna C, Gavin M, Daniele G, Alessandro L. Multi-walled carbon nanotubes decorated with titanium nanoparticles: Synthesis and characterization. Nanotechnology. 2007;18:485610.

  50. Zhang F-J, Oh W-C. Characterization and photonic effect of novel Ag-CNT/TiO2 composites and their bactericidal activities. Bull Korean Chem Soc. 2010;31:1981–7.

    Article  Google Scholar 

  51. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V. Journal of colloid and interface science Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci. 2010;352:68–74.

    Article  Google Scholar 

  52. Kim YS, Linh LT, Park ES, Chin S, Bae GN, Jurng J. Antibacterial performance of TiO2 ultrafine nanopowder synthesized by a chemical vapor condensation method: effect of synthesis temperature and precursor vapor concentration. Powder Technol. 2012;215-216:195–9.

    Article  Google Scholar 

  53. Maness P, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO2 reaction : toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65:4094–4098.

    Google Scholar 

  54. Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun. 2000;2:207–10.

    Article  Google Scholar 

  55. Demchick P, Koch AL. The permeability of the wall fabric of escherichia coli and bacillus subtilis. The permeability of the wall fabric of escherichia coli and bacillus subtilis. J Bacteriol. 1996;178:768–73.

    Article  Google Scholar 

  56. Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006;40:3527–32.

  57. Tsuang Y-H, Sun J-S, Huang Y-C, Lu C-H, Chang WH-S, Wang C-C. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs. 2008;32:167–74.

    Article  Google Scholar 

  58. Yadav HM, Kim J-S, Pawar SH. Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J Chem Eng. 2016;33:1989–98.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Department of Science and Technology, New Delhi, India (DST-No. SR/FT/CS-137/2010) for financial support under research schemes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sagar D. Delekar or Shivaji H. Pawar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koli, V.B., Delekar, S.D. & Pawar, S.H. Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites. J Mater Sci: Mater Med 27, 177 (2016). https://doi.org/10.1007/s10856-016-5788-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5788-0

Keywords

Navigation