Skip to main content
Log in

Enhanced visible light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of methylene blue (MB) has been investigated under visible light irradiation with an incandescent light bulb using chromium doped TiO2 nanoparticles. Cr–TiO2 photocatalysts were successfully synthesized by sol–gel method at room temperature and characterized by X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), Raman spectroscopy, Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy. The band gap energy of the nanoparticles were estimated using UV–Vis DRS technique. With increasing Cr3+ cations content into TiO2 host lattice, the optical absorption band tuned in the visible region. XRD and TEM results reveal uniform and crystalline anatase TiO2 nanoparticles. The photodegradation of MB indicated that the photocatalytic activity of pure TiO2 nanoparticles increased with increasing Cr3+ cations concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46, 3669–3686 (2011)

    Article  Google Scholar 

  2. D.F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 25, 1522–1529 (1991)

    Article  Google Scholar 

  3. Y. Yalçın, M. Kılıç, Z. Çınar, Fe+3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Appl. Catal. B Environ. 99, 469–477 (2010)

    Article  Google Scholar 

  4. J. Virkutyte, R.S. Varma, Visible light activity of Ag-loaded and guanidine nitrate-doped nano-TiO2: degradation of dichlorophenol and antibacterial properties. RSC Adv. 2, 1533–1539 (2012)

    Article  Google Scholar 

  5. S.S. Soni, G.S. Dave, M.J. Henderson, A. Gibaud, Visible light induced cell damage of Gram positive bacteria by N-doped TiO2 mesoporous thin films. Thin Solid Films 531, 559–565 (2013)

    Article  Google Scholar 

  6. S.S. Soni, M.J. Henderson, J.F. Bardeau, A. Gibaud, Visible-light photocatalysis in titania-based mesoporous thin films. Adv. Mater. 20, 1493–1498 (2008)

    Article  Google Scholar 

  7. J.C.S. Wu, C.H. Chen, A visible-light response vanadium-doped titania nanocatalyst by sol–gel method. J. Photochem. Photobiol. A Chem. 163, 509–515 (2004)

    Article  Google Scholar 

  8. J. Choi, H. Park, M.R. Hoffmann, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783–792 (2010)

    Article  Google Scholar 

  9. J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo et al., Hydrothermal doping method for preparation of Cr3+–TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl. Catal. B Environ. 62, 329–335 (2006)

    Article  Google Scholar 

  10. P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl. Catal. B Environ. 73, 51–59 (2007)

    Article  Google Scholar 

  11. C.C. Tsai, H. Teng, Chromium-doped titanium dioxide thin-film photoanodes in visible-light-induced water cleavage. Appl. Surf. Sci. 254, 4912–4918 (2008)

    Article  Google Scholar 

  12. A.T. Vu, Q.T. Nguyen, T.H.L. Bui, M.C. Tran, T.P. Dang, T.K.H. Tran, Synthesis and characterization of TiO2 photocatalyst doped by transition metal ions (Fe3+, Cr3+ and V5+). Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 015009 (2010)

    Article  Google Scholar 

  13. X. Li, Z. Guo, T. He, The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys. Chem. Chem. Phys. 15, 20037–20045 (2013)

    Article  Google Scholar 

  14. S. Zhang, Y. Chen, Y. Yu, H. Wu, S. Wang, B. Zhu et al., Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J. Nanoparticle Res. 10, 871–875 (2007)

    Article  Google Scholar 

  15. S. Buddee, S. Wongnawa, U. Sirimahachai, W. Puetpaibool, Recyclable UV and visible light photocatalytically active amorphous TiO2 doped with M(III) ions (M = Cr and Fe). Mater. Chem. Phys. 126, 167–177 (2011)

    Article  Google Scholar 

  16. B. Choudhury, A. Choudhury, Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles. Mater. Sci. Eng., B 178, 794–800 (2013)

    Article  Google Scholar 

  17. S. Ould-Chikh, O. Proux, P. Afanasiev, L. Khrouz, M.N. Hedhili, D.H. Anjum et al., Photocatalysis with chromium-doped TiO2: bulk and surface doping. ChemSusChem 7, 1361–1371 (2014)

    Article  Google Scholar 

  18. R. Bechstein, M. Kitta, J. Schütte, H. Onishi, A. Kühnle, The effects of antimony doping on the surface structure of rutile TiO2(110). Nanotechnology 20, 264003 (2009)

    Article  Google Scholar 

  19. Z. Zhang, C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. 102, 10871–10878 (1998)

    Article  Google Scholar 

  20. S.D. Delekar, H.M. Yadav, S.N. Achary, S.S. Meena, S.H. Pawar, Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. Appl. Surf. Sci. 263, 536–545 (2012)

    Article  Google Scholar 

  21. H.M. Yadav, S.V. Otari, R.A. Bohara, S.S. Mali, S.H. Pawar, S.D. Delekar, Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. A Chem. 294, 130–136 (2014)

    Article  Google Scholar 

  22. J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D. Luan, S. Madhavi et al., Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 132, 6124–6130 (2010)

    Article  Google Scholar 

  23. K. Bhattacharyya, S. Varma, A.K. Tripathi, S.R. Bharadwaj, A.K. Tyagi, Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene. J. Phys. Chem. C 112, 19102–19112 (2008)

    Article  Google Scholar 

  24. Y. Yu, X. Yin, A. Kvit, X. Wang, Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 14, 2528–2535 (2014)

    Article  Google Scholar 

  25. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Physical Electronics Division, USA, 1979)

    Google Scholar 

  26. J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A Chem. 180, 196–204 (2006)

    Article  Google Scholar 

  27. L. Li, C. Liu, Y. Liu, Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light. Mater. Chem. Phys. 113, 551–557 (2009)

    Article  Google Scholar 

  28. J.P. Tardivo, A. Del Giglio, C.S. de Oliveira, D.S. Gabrielli, H.C. Junqueira, D.B. Tada et al., Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn. Photodyn. Ther. 2, 175–191 (2005)

    Article  Google Scholar 

  29. B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164, 870–875 (2009)

    Article  Google Scholar 

  30. Y. Bulut, H. Aydın, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194, 259–267 (2006)

    Article  Google Scholar 

  31. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A Chem. 140, 163–172 (2001)

    Article  Google Scholar 

  32. F. Wang, S. Min, Y. Han, L. Feng, Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized composite photocatalysts. Superlattices Microstruct. 48, 170–180 (2010)

    Article  Google Scholar 

  33. T. Mohammad, H. Morrison, Simultaneous photoconjugation of methylene blue and cis-Rh(phen)2Cl2 + to DNA via a synergistic effect†. Photochem. Photobiol. 71, 369–381 (2007)

    Article  Google Scholar 

  34. P. Sangpour, F. Hashemi, A.Z. Moshfegh, Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: a comparative study. J. Phys. Chem. C 114, 13955–13961 (2010)

    Article  Google Scholar 

  35. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  36. M.B. Fisher, D.A. Keane, P. Fernández-Ibáñez, J. Colreavy, S.J. Hinder, K.G. McGuigan et al., Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination. Appl. Catal. B Environ. 130–131, 8–13 (2013)

    Article  Google Scholar 

  37. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331–349 (2012)

    Article  Google Scholar 

  38. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31, 145–157 (2001)

    Article  Google Scholar 

  39. B. Ohtani, Y. Ogawa, S. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J. Phys. Chem. B. 5647, 3746–3752 (1997)

    Article  Google Scholar 

  40. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170, 520–529 (2009)

    Article  Google Scholar 

  41. S. Liu, J.-H. Yang, J.-H. Choy, Microporous SiO2–TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange. J. Photochem. Photobiol. A Chem. 179, 75–80 (2006)

    Article  Google Scholar 

  42. M.A. Rauf, S.B. Bukallah, A. Hamadi, A. Sulaiman, F. Hammadi, The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2. Chem. Eng. J. 129, 167–172 (2007)

    Article  Google Scholar 

  43. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by a grant (14CTAP-C077607-01) from Infrastructure and transportation technology promotion research program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, H.M., Kolekar, T.V., Barge, A.S. et al. Enhanced visible light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol–gel method. J Mater Sci: Mater Electron 27, 526–534 (2016). https://doi.org/10.1007/s10854-015-3785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3785-6

Keywords

Navigation