Skip to main content

Advertisement

Log in

Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone tissue engineering literature conveys investigations regarding biodegradable polymers where bioactive inorganic materials are added either before or after electrospinning process. The goal is to mimic the composition of bone and enhance the biocompatibility of the materials. Yet, most polymeric materials are hydrophobic in nature; therefore, their surfaces are not favorable for human cellular adhesion. In this sense, modifications of the hydrophobic surface of electrospun polymer fibers with hydrophilic and bioactive nanoparticles are beneficial. In this work, dispersion of hydroxyapatite (HAp), which is similar to the mineral component of natural bone, within biodegradable and biocompatible polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with the aid of a surfactant has been investigated. Non-ionic TWEEN20 and 12-hydroxysteric acid (HSA), cationic dodecyl trimethyl ammonium bromide (DTAB) and anionic sodium deoxycholate and sodium dodecyl sulfate (SDS) surfactants were used for comparison in order to prepare stable and homogenous nanocomposite suspensions of HAp/PHBV for the electrospinning process. Continuous and uniform composite nanofibers were generated successfully within a diameter range of 400–1,000 nm by the mediation of all surfactant types. Results showed that incorporation of HAp and any of the surfactant types strongly activates the precipitation rate of the apatite-like particles and decreases percent crystallinity of the HAp/PHBV mats. Mineralization was greatly enhanced on the fibers produced by using DTAB, HSA, and especially SDS on where also osteoblastic metabolic activity was similarly increased. The produced HAp/PHBV nanofibrous composite scaffolds would be a promising candidate as an osteoconductive bioceramic/polymer composite material for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61:1065–83.

    Article  Google Scholar 

  2. Lü LX, Wang YY, Mao X, Xiao ZD, Huang NP. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow derived mesenchymal stem cells. Biomed Mater. 2012;7:1–11.

    Google Scholar 

  3. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–211.

    Article  Google Scholar 

  4. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–21.

    Article  Google Scholar 

  5. Smith IO, Liu XH, Smith LA, Ma PX. Nano-structured polymer scaffolds for tissue engineering and regenerative medicine. Nanomed Nanobiotechnol. 2009;1(2):226–36.

    Article  Google Scholar 

  6. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  Google Scholar 

  7. Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun. 2008;29:1775–92.

    Article  Google Scholar 

  8. Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med. 2008;19:2925–32.

    Article  Google Scholar 

  9. Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res. 2007;82A:445–54.

    Article  Google Scholar 

  10. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.

    Article  Google Scholar 

  11. Christenson EM, Anseth KS, Beucken JJ, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007;25(1):11–22.

    Article  Google Scholar 

  12. Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds. Soft Matter. 2008;4:2144–9.

    Article  Google Scholar 

  13. Holzwartha JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem. 2011;21:10243–51.

    Article  Google Scholar 

  14. Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces. 2004;39:125–31.

    Article  Google Scholar 

  15. Meng W, Xing ZC, Jung KH, Kim SY, Yuan J, Kang IK, Yoon SC, Shin HI. Synthesis of gelatin-containing PHBV nanofiber mats for biomedical application. J Mater Sci Mater Med. 2008;19:2799–807.

    Article  Google Scholar 

  16. Sill TJ, Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  Google Scholar 

  17. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21.

    Article  Google Scholar 

  18. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  Google Scholar 

  19. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95:2126–46.

    Article  Google Scholar 

  20. Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin/hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater. 2005;15:1988–94.

    Article  Google Scholar 

  21. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  Google Scholar 

  22. Hong Z, Qiu X, Sun J, Deng M, Chen X, Jing X. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45:6699–706.

    Article  Google Scholar 

  23. Xu X, Chen X, Liu A, Hong Z, Jing X. Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposite fibers. Eur Polym. 2007;43:3187–96.

    Article  Google Scholar 

  24. Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005;26:4139–47.

    Article  Google Scholar 

  25. Venugopal J, Vadgama P, SampathKumar TS, Ramakrishna S. Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology. 2007;18:1–8.

    Article  Google Scholar 

  26. Kim HW, Lee HH, Knowles JC. Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly(lactic acid) for bone regeneration. J Biomed Mater Res A. 2006;79(3):643–9.

    Article  Google Scholar 

  27. Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang IK, Kwon OH. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering scaffold. J Biosci Bioeng. 2005;100(1):43–9.

    Article  Google Scholar 

  28. Sultana N, Wang M. Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med. 2008;19:2555–61.

    Article  Google Scholar 

  29. Sultana N, Wang M. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication. 2012;4:1–15.

    Article  Google Scholar 

  30. Ndreu A, Nikkola L, Ylikauppila H, Ashammak N, Hasirci V. Electrospun biodegradable nanofibrous mats for tissue engineering. Nanomedicine. 2008;3(1):45–60.

    Article  Google Scholar 

  31. Cool SM, Kenny B, Wu A, Nurcombe V, Trau M, Cassady AI, Grøndahl L. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. J Biomed Mater Res. 2007;82A:599–610.

    Article  Google Scholar 

  32. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  33. Saha N, Dubey AK, Basu B. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites. J Biomed Mater Res B. 2012;100(1):256–64.

    Article  Google Scholar 

  34. Chen X, Li Y, Hodgson PD, Wen C. In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium–zirconium alloy. Mater Sci Eng C. 2011;31:1545–52.

    Article  Google Scholar 

  35. Wang XJ, Li YC, Xiong JY, Hodgson PD, Wen CE. Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomater. 2009;5(9):3616–24.

    Article  Google Scholar 

  36. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  37. Cheng ML, Sun YM. Relationship between free volume properties and structure of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes via various crystallization conditions. Polymer. 2009;50:5298–307.

    Article  Google Scholar 

  38. Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, Park WH. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol. 2004;34:249–56.

    Article  Google Scholar 

  39. You Y, Lee SJ, Min BM, Park WH. Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid). J Appl Polym Sci. 2006;99:1214–21.

    Article  Google Scholar 

  40. Lin K, Chua KN, Christopherson GT, Lim S, Mao HQ. Reducing electrospun nanofiber diameter and variability using cationic amphiphiles. Polymer. 2007;48:6384–94.

    Article  Google Scholar 

  41. Wang XJ, Li YC, Hodgson PD, Wen CE. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Tissue Eng A. 2010;16(1):309–16.

    Article  Google Scholar 

  42. Sendemir-Urkmez A, Jamison RD. The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J Biomed Mater Res A. 2007;81(3):624–33.

    Article  Google Scholar 

  43. Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009;5(8):2884–93.

    Article  Google Scholar 

  44. Zhang YZ, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29(32):4314–22.

    Article  Google Scholar 

  45. Duncan RL, Akanbi KA, Farach-Carson MC. Calcium signals and calcium channels in osteoblastic cells. Semin Nephrol. 1998;18:178–90.

    Google Scholar 

  46. Dvorak MM, Riccardi D. Ca2+ as an extracellular signal in bone. Cell Calcium. 2004;35:249–55.

    Article  Google Scholar 

  47. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:455–84.

    Article  Google Scholar 

  48. Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res. 2001;57(2):258–67.

    Article  Google Scholar 

  49. Yu HS, Jang JH, Kim TI, Lee HH, Kim HW. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J Biomed Mater Res A. 2009;88(3):747–54.

    Article  Google Scholar 

  50. Chou YF, Huang W, Dunn JC, Miller TA, Wu BM. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Biomaterials. 2005;26(3):285–95.

    Article  Google Scholar 

  51. Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng A. 2008;14:2105–19.

    Article  Google Scholar 

  52. Whited BM, Whitney JR, Hofmann MC, Xu Y, Rylander MN. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials. 2011;32(9):2294–304.

    Article  Google Scholar 

  53. Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, Grolleau B, Mercier L, Chappard D. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507.

    Article  Google Scholar 

  54. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.

    Article  Google Scholar 

  55. Wei J, Heo SJ, Kim DH, Kim SE, Hyun YT, Shin JW. Comparison of physical, chemical and cellular responses to nano- and microsized calcium silicate/poly(epsilon-caprolactone) bioactive composites. J R Soc Interface. 2008;5:617–30.

    Article  Google Scholar 

  56. Osathanon T, Bespinyowong K, Arksornnukit M, Takahashi H, Pavasant P. Human osteoblast-like cell spreading and proliferation on Ti–6Al–7Nb surfaces of varying roughness. J Oral Sci. 2011;53:23–30.

    Article  Google Scholar 

  57. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.

    Article  Google Scholar 

  58. Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10:1160–8.

    Article  Google Scholar 

  59. Aoki N, Akasaka T, Watari F, Yokoyama A. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions. Dent Mater J. 2007;26(2):178–85.

    Article  Google Scholar 

  60. Hallab N, Bundy K, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;71:55–71.

    Article  Google Scholar 

  61. Satriano C, Carnazza S, Guglielmino S, Marletta G. Surface free energy and cell attachment onto ion-beam irradiated polymer surfaces. Nucl Instrum Methods Phys Res B. 2003;208:287–93.

    Article  Google Scholar 

  62. Lin Y, Wang L, Zhang P, Wang X, Chen X, Jing X, Su Z. Surface modification of poly(L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Acta Biomater. 2006;2:155–64.

    Article  Google Scholar 

  63. Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J. The effect of hydrogel charge density on cell attachment. Biomaterials. 2004;25:3023–8.

    Article  Google Scholar 

  64. Choee JH, Lee SJ, Lee SJ, Lee YM, Rhess JM, Lee HB, Khang G. Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient. J Appl Polym Sci. 2004;92:599–606.

    Article  Google Scholar 

  65. Stachewicz U, Stone CA, Willis CR, Barber AH. Charge assisted tailoring of chemical functionality at electrospun nanofiber surfaces. J Mater Chem. 2012;22:22935–41.

    Article  Google Scholar 

  66. Di-Silvio L, Gurav N. Osteoblasts. In: Koller MR, Palsson BO, Masters JRW, Koller MR, Palsson BO, Masters JRW, editors. Primary mesenchymal cells. Norwell, MA: Kluwer Academic Publishers; 2001. p. 221–41.

    Google Scholar 

  67. Lian JB, Stein GS. Concepts of osteoblast growth and differentiation—basis for modulation of bone cell-development and tissue formation. Crit Rev Oral Biol. 1992;3:269–305.

    Google Scholar 

  68. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. The fabrication of nano-hyroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behaviour for bone tissue engineering. Bone. 2009;45:4–16.

    Article  Google Scholar 

  69. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143(3):420–30.

    Article  Google Scholar 

  70. House MG, Kohlmeier L, Chattopadhyay N, Kifor O, Yamaguchi T, Leboff MS, Glowacki J, Brown EM. Expression of an extracellular calcium-sensing receptor in human and mouse bone marrow cells. J Bone Miner Res. 1997;12:1959–70.

    Article  Google Scholar 

  71. Ye CP, Yamaguchi T, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM. Extracellular calcium-sensing-receptor (Car)-mediated opening of an outward K+ channel in Murine Mc3T3-E1 osteoblastic cells: evidence for expression of a functional car. Bone. 2000;27:21–7.

    Article  Google Scholar 

  72. Eklou-Kalonji E, Denis I, Lieberherr M, Pointillart A. Effects of extracellular calcium on the proliferation and differentiation of porcine osteoblasts in vitro. Cell Tissue Res. 1998;292:163–71.

    Article  Google Scholar 

  73. Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988;175:266–76.

    Article  Google Scholar 

Download references

Acknowledgments

A. Suslu acknowledges the support from TUBITAK, in the framework of the National Scholarship Programme for PhD Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Albayrak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslu, A., Albayrak, A.Z., Urkmez, A.S. et al. Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers. J Mater Sci: Mater Med 25, 2677–2689 (2014). https://doi.org/10.1007/s10856-014-5286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5286-1

Keywords

Navigation