Skip to main content

Advertisement

Log in

Development of silver nano-coatings on silk sutures as a novel approach against surgical infections

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The infections give rise to a range of clinical problems and prolong hospitalization with increased healthcare costs. Moreover, persistent infections exasperate the problem of antibiotic resistance. The aim of this study was the development of effective and low-cost antibacterial silver coatings on surgical sutures by adopting an innovative photochemical deposition process to prevent early contamination of surgical wounds. The silver deposition technology adopted in this work is an innovative process based on the in situ photoreduction of a silver solution. The samples were dipped in the silver solution and then exposed to UV radiation in order to induce the synthesis of silver clusters on the surface of the suture. The homogeneous distribution of silver particles on the surface and on the cross-section of the treated sutures was demonstrated. All the antibacterial studies clearly demonstrated that the use of novel silver treated sutures could represent clinical advantages in terms of the prevention of surgical infections against bacterial colonization. The silver coating deposited on the sutures demonstrated no cytotoxic effect on a selected cell population. The results obtained suggested that the antibacterial silver-coated sutures developed in this work could represent an interesting alternative to conventional sutures, with evident advantages in terms of prevention of the surgical infections and on the health costs. In addiction, very low concentrations of silver significantly inhibited the microbial load, without affecting the cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang L, Taylor H, Gerber M, Orndorff PE, Horton JR, Tonelli A. Formation of antibiotic, biodegradable/bioabsorbable polymers by processing with neomycin sulfate and its inclusion compound with β-cyclodextrin. J Appl Polym Sci. 1999;74:937–47.

    Article  Google Scholar 

  2. Greenberg JA, Clark RM. Advances in suture material for obstetric and gynecologic surgery. Rev Obstet Gynecol. 2009;2(3):146–58.

    Google Scholar 

  3. Khiste SV, Ranganath V, Nichani AS. Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study. J Periodontal Implant Sci. 2013;43:130–5.

    Article  Google Scholar 

  4. Greenwald D, Shumway S, Albear P, Gottlieb L. Mechanical comparison of 10 suture materials before and after in vivo incubation. J Surg Res. 1994;56:372–7.

    Article  Google Scholar 

  5. Yaltirik M, Dedeoglu K, Bilgic B, Koray M, Ersev H, Issever H. Comparison of four different suture materials in soft tissues of rats. Oral Dis. 2003;9(6):284–6.

    Article  Google Scholar 

  6. Smith JW, Aston SJ. Grap & Smith’s plastic surgery. Boston: Little Brown; 1991. p. 13.

    Google Scholar 

  7. Dahlke H, Dociu N, Thurau K. Thrombogenicity of different suture materials as revealed by scanning electron microscopy. J Biomed Mater Res. 1980;14:251–68.

    Article  Google Scholar 

  8. Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man. A study of the problems of wound infection. Br J Exp Pathol. 1957;38:573–86.

    Google Scholar 

  9. Kudur MH, Pai SB, Sripathi H, Prabhu S. Sutures and suturing techniques in skin closure. Indian J. Dermatol. Venereol. Leprol. 2009;75:425–34.

    Article  Google Scholar 

  10. Selving KA, Biagiotti GR, Leknes KN, Wikesjo UM. Oral tissue reactions to suture materials. Int J Periodontics Restor Dent. 1998;18:474–87.

    Google Scholar 

  11. Altman Gregory H, Diaz Frank, Jakuba Caroline, Calabro Tara, Horan Rebecca L, Chen Jingsong, Helen Lu, Richmond John, Kaplan David L. Silk-based biomaterials. Biomaterials. 2003;24:401–16.

    Article  Google Scholar 

  12. Selvig KA, Biagiotti GR, Leknes KN, Wikesjö UM. Oral tissue reactions to suture materials. Int J Periodontics Restor Dent. 1998;18:474–87.

    Google Scholar 

  13. Lilly GE, Osbon DB, Hutchinson RA, Heflich RH. Clinical and bacteriologic aspects of polyglycolic acid sutures. J Oral Surg. 1973;31:103–5.

    Google Scholar 

  14. Parirokh M, Asgary S, Eghbal MJ, Stowe S, Kakoei S. A scanning electron microscope study of plaque accumulation on silk and PVDF suture materials in oral mucosa. Int Endod J. 2004;37:776–81.

    Google Scholar 

  15. Matalon S, Kozlovsky A, Kfir A, Levartovsky S, Mazor Y, Slutzky H. The effect of commonly used sutures on inflammation inducing pathogens e an in vitro study. J Craniomaxillofac Surg. 2013;41:593–7.

    Article  Google Scholar 

  16. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection. Am J Infect Control. 1999;27:97–134.

    Article  Google Scholar 

  17. Suárez GJ, De Toro CM, Docobo DF, Rubio CC, Martín CJ, Docobo PF. Prevention of surgical infection using reabsorbable antibacterial suture (Vicryl Plus) versus reabsorbable conventional suture in hernioplasty. An experimental study in animals. Cir Esp. 2007;81(6):324–9.

    Article  Google Scholar 

  18. Di Lonardo A, Lazzeri D, Mosca A, Oliverio A, Miragliotta G, Pascone C, Agostin T. Antiseptic sutures: clinical evaluation of microbiological efficacy. Eur J Plast Surg. 2012;35:49–53.

    Article  Google Scholar 

  19. Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, Brown KR, Towne JB. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg. 2006;203:481–9.

    Article  Google Scholar 

  20. Wang L, Chen DD, Sunt JQ. Layer-by-layer deposition of polymeric microgel films on surgical sutures for loading and release of ibuprofen. Langmuir. 2009;25:7990–4.

    Article  Google Scholar 

  21. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:122–9.

    Article  Google Scholar 

  22. Wright JB, Lam K, Burrell RE. Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment. Am J Infect Control. 1998;26:572–7.

    Article  Google Scholar 

  23. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E.-coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  Google Scholar 

  24. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  Google Scholar 

  25. Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55:59–63.

    Article  Google Scholar 

  26. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem. 2006;110:16248–53.

    Google Scholar 

  27. Chen J, Han CM, Lin XW, Tang ZJ, Su SJ. Effect of silver nanoparticle dressing on second degree burn wound. Zhonghua Wai Ke Za Zhi. 2006;44:50–2.

    Google Scholar 

  28. Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect. 2007;8:397–403.

    Article  Google Scholar 

  29. Pollini M, Sannino A, Maffezzoli A, Licciulli A. European Patent No. EP1986499, May 11, 2008.

  30. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker D, Tessier CA, Youngs WJ. Silver(I) − imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc. 2005;127:2285–91.

    Article  Google Scholar 

  31. Son WK, Youk JH, Lee TS, Park WH. Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromol Rapid Commun. 2004;25:1632–7.

    Article  Google Scholar 

  32. Pasqual A. Pathogenesis of catheter-related infections: lessons for new designs. Clin Microbiol Infect. 2002;8:256–64.

    Article  Google Scholar 

  33. Edlich RF, Panek PH, Rodeheaver GT, Turnbull VG, Kurtz LD, Edgerton MT. Physical and chemical configuration of sutures in the development of surgical infection. Ann Surg. 1973;177:679–87.

    Article  Google Scholar 

  34. Dubasa ST, Wacharanadb S, Potiyarajc P. Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids and Surfaces A. 2011;380(1):25–8.

    Article  Google Scholar 

  35. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14:244–69.

    Article  Google Scholar 

  36. de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37:387–97.

    Article  Google Scholar 

  37. Leknes KN, Roynstrand IT, Selvig KA. Human gingival tissue reactions to silk and expanded polytetrafluoroethylene sutures. J Periodontol. 2005;76:34–42.

    Article  Google Scholar 

  38. Leknes KN, Selvig KA, Boe OE, Wikesj UM. Tissue reactions to sutures in the presence and absence of anti-infective therapy. J Periodontol. 2005;76:130–8.

    Article  Google Scholar 

  39. Velvart P, Peters CI, Peters OA. Soft tissue management: suturing and wound closure. Endod Top. 2005;11:179–95.

    Article  Google Scholar 

  40. Phillips E, Young T. Methicillin-resistant Staphylococcus aureus and wound management. Br J Nurs. 1995;4:1345–9.

    Google Scholar 

  41. Otten JE, Wiedmann-Al-Ahmad M, Jahnke H, Pelz K. Bacterial colonization on different suture materials–a potential risk for intraoral dentoalveolar surgery. J Biomed Mater Res B. 2005;74(1):627–35.

    Article  Google Scholar 

  42. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.

    Article  Google Scholar 

  43. Pollini M, Paladini F, Licciulli A, Maffezzoli A, Nicolais L, Sannino A. A silver-coated wool yarns with durable antibacterial properties. J Appl Polym Sci. 2012;125(3):2239–44.

    Article  Google Scholar 

  44. Paladini F, Pollini M, Deponti D, Di Giancamillo A, Peretti G, Sannino A. Effect of silver nanocoatings on catheters for haemodialysis in terms of cell viability, proliferation, morphology and antibacterial activity. J Mater Sci. 2013;24(4):1105–12.

    Article  Google Scholar 

  45. Vasanthan A, Satheesh K, Hoopes W, Lucaci P, Williams K, Rapley J. Comparing suture strengths for clinical applications: a novel in vitro study. J Periodontol. 2009;80:618–24.

    Article  Google Scholar 

  46. Harnet JC, Le Guen E, Ball V, Tenenbaum H, Ogier J, Haikel Y, Vodouhê CJ. Antibacterial protection of suture material by chlorhexidine-functionalized polyelectrolyte multilayer films. J Mater Sci. 2009;20(1):185–93.

    Article  Google Scholar 

  47. Akiyama H, Torigoe R, Arata J. Interaction of Staphylococcus aureus cells and silk threads in vitro and in mouse skin. J Dermatol Sci. 1993;6(3):247–57.

    Article  Google Scholar 

  48. Pollini M, Paladini F, Catalano M, Taurino A, Licciulli A, Maffezzoli A, Sannino A. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J Mater Sci. 2011;22:2005–12.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Riccardo Raho from Engineering Department of University of Salento for the kindness in providing technical support during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Paladini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Simone, S., Gallo, A.L., Paladini, F. et al. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci: Mater Med 25, 2205–2214 (2014). https://doi.org/10.1007/s10856-014-5262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5262-9

Keywords

Navigation