Skip to main content

Advertisement

Log in

Biofilm inhibiting nanocomposite coatings—a promising alternative to combat surgical site infections

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Surface texture modification for reducing physical adherence of bacteria can be a critical alternative to conventional antimicrobials, especially in the case of surgical accessories. In the present study, a nanocomposite hydrophobic coating formulation exhibiting biofilm-inhibiting properties was developed. The formulation alone and in combination with a biocide (chitosan) was deposited by dip-coating on different substrates like cover glass slips, acrylonitrile butadiene styrene (ABS) coupons, and surgical sutures made of polyglactin, nylon, and silk. The coated substrates were characterized for their roughness, wetting behavior, and surface morphology. Biofilm inhibition by the formulation when coated on various substrates was evaluated against multiple bacterial strains, namely Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecium, Escherichia coli, and Acinetobacter baumannii sourced both from ATCC and clinical cases. The nanocomposite coatings were found to exhibit substantial biofilm inhibition against all tested bacterial strains. The biofilm inhibition property of the nanocomposite-coated polyglactin suture was found to be higher (59–67%) when compared with commercially available antibacterial sutures, whose percentage biofilm inhibition was found to be 43–48% when tested against clinical isolates of S. aureus, P. aeruginosa, and A. baumannii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lenz, A, Fairweather, M, Cheadle, W, “Resistance Profiles in Surgical-Site Infection.” Future Microbiol., 3 (4) 453–462 (2008)

    Article  CAS  Google Scholar 

  2. Owens, C, Stoessel, K, “Surgical Site Infections: Epidemiology, Microbiology and Prevention.” J. Hosp. Infect., 70 3–10 (2008)

    Article  Google Scholar 

  3. Chen, X, Hou, D, Wang, L, Zhang, Q, Zou, J, Sun, G, “Antibacterial Surgical Silk Sutures Using a High-Performance Slow-Release Carrier Coating System.” ACS Appl. Mater. Interfaces, 7 (22) 394–403 (2015)

    Google Scholar 

  4. Li, Y, Kumar, K, Dabkowski, J, Corrigan, M, Scott, K, et al. “New Bactericidal Surgical Suture Coating.” Langmuir, 28 (12) 134–139 (2012)

    CAS  Google Scholar 

  5. Ahmed, I, Boulton, A, Rizvi, S, Carlos, W, Dickenson, E, Smith, N, Reed, M, “The Use of Triclosan-Coated Sutures to Prevent Surgical Site Infections: A Systematic Review and Meta-Analysis of the Literature.” BMG Open, 9 1–12 (2019)

    Google Scholar 

  6. Arciola, CR, Campoccia, D, Gamberini, S, Donati, M, Pirini, V, Visai, L, Speziale, P, “Montanaro, L, “Antibiotic Resistance in Exopolysaccharide-Forming Staphylococcus epidermidis Clinical Isolates from Orthopaedic Implant Infections.” Biomaterials, 26 (6) 6530–6535 (2005)

    Google Scholar 

  7. Narayan, P, Srihari, P, “A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm.” Regen. Eng. Transl. Med., 6 330–346 (2020)

    Article  Google Scholar 

  8. Donlan, R, “Biofilm Formation: A Clinically Relevant Microbiological Process.” Clin. Infect. Dis., 33 1387–1392 (2001)

    Article  CAS  Google Scholar 

  9. Gristna, A, Hobgood, C, Webb, L, Lawrence, X, Myrvik, Q, “Adhesive Colonization of Biomaterials and Antibiotic Resistance.” Biomaterials, 8 (6) 423–426 (1987)

    Article  Google Scholar 

  10. Luppens, SB, Reij, M, Heijden, R, Rombouts, F, Abee, T, “Development of a Standard Test to Assess the Resistance of Staphylococcus aureus Biofilm Cells to Disinfectants.” Appl. Environ. Microbiol., 68 4194–4200 (2002)

    Article  CAS  Google Scholar 

  11. Lichter, A, Vliet, K, Rubner, M, “Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform.” Macromolecules, 42 (22) 8573–8586 (2009)

    Article  CAS  Google Scholar 

  12. Poole, K, “Mechanisms of Bacterial Biocide and Antibiotic Resistance.” J. Appl. Micrbiol., 92 55–64 (2002)

    Article  Google Scholar 

  13. Jain, J, Arora, S, Rajwade, J, Omray, P, Khandelwal, S, Paknikar, K, "Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use.” Mol. Pharm., 6 (5) 1388–1401 (2009)

    Article  CAS  Google Scholar 

  14. Hsiao, M, Chen, S, Shieh, D, Yeh, C, “One-Pot Synthesis of Hollow Au3Cu1 Spherical-Like and Biomineral Botallackite Cu2(OH)3Cl Flowerlike Architectures Exhibiting Antimicrobial Activity.” J. Phys. Chem., 110 205–210 (2006)

    Article  CAS  Google Scholar 

  15. Balagna, C, Irfan, M, Perero, S, Miola, M, Maina, G, Crosera, M, et al. “Antibacterial Nanostructured Composite Coating on High Performance VectranTM Fabric for Aerospace Structures.” Surf. Coat. Technol., 373 47–55 (2019)

    Article  CAS  Google Scholar 

  16. Rodriguez, A, Torres, D, Rafiq, B, Hernandez, M, Ginebra, M, et al. “Bioactivity and Antibacterial Properties of Calcium- and Silver-Doped Coatings on 3D Printed Titanium Scaffolds.” Surf. Coat. Technol., 421 (2) 1274–1276 (2021)

    Google Scholar 

  17. Tolaymat, T, Badawy, A, Genaidy, A, Scheckel, K, Luxton, T, Suidan, M, “An Evidence-Based Environmental Perspective of Manufactured Silver Nanoparticle in Syntheses and Applications: A Systematic Review and Critical Appraisal of Peer-Reviewed Scientific Papers.” Sci. Total. Environ., 408 999–1006 (2010)

    Article  CAS  Google Scholar 

  18. Ferdous, Z, Nemmar, A, “Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure.” Int. J. Mol. Sci., 21 2375 (2020)

    Article  CAS  Google Scholar 

  19. Naz, S, Gul, A, Zia, M, “Toxicity of Copper Oxide Nanoparticles: A Review Study.” IET Nanobiotechnol., 14 1–13 (2020)

    Article  Google Scholar 

  20. Kumaravel, V, Nair, K, Mathew, S, Bartlett, J, Kennedy, J, Manning, H, et al. “Antimicrobial TiO2 Nanocomposite Coatings for Surfaces, Dental and Orthopaedic Implants.” Chem. Eng. J., 416 129071 (2021)

    Article  CAS  Google Scholar 

  21. Crick, C, Ismail, S, Pratten, J, Parkin, I, “An Investigation into Bacterial Attachment to an Elastomeric Superhydrophobic Surface Prepared via Aerosol Assisted Deposition.” Thin Solid Films, 519 3722–3727 (2011)

    Article  CAS  Google Scholar 

  22. Mahadik, S, Pedraza, F, Mahadik, S, Relekar, B, Thorat, S, “Biocompatible Superhydrophobic Coating Material for Biomedical Applications.” J. Sol Gel Sci. Technol., 81 791–796 (2017)

    Article  CAS  Google Scholar 

  23. Parvate, S, Dixit, P, Chattopadhyay, S, “Superhydrophobic Surfaces: Insights from Theory and Experiment.” J. Phys. Chem. B., 124 (8) 1323–1360 (2020)

    Article  CAS  Google Scholar 

  24. Zhang, X, Wang, L, Levänen, E, “Superhydrophobic Surfaces for the Reduction of Bacterial Adhesion.” RSC Adv., 3 12003–12020 (2013)

    Article  CAS  Google Scholar 

  25. Liu, S, Zheng, J, Hao, L, Yegin, Y, Bae, M, Ulugun, B, et al. “Dual-Functional Superhydrophobic Coatings with Bacterial Anticontact and Antimicrobial Characteristics.” ACS Appl. Mater. Interfaces, 12 21311–21321 (2020)

    Article  CAS  Google Scholar 

  26. Hook, A, Chang, C, Yang, J, Luckett, J, Cockayne, A, Atkinson, S, et al. “Combinatorial Discovery of Polymers Resistant to Bacterial Attachment.” Nat. Biotechnol., 30 868–875 (2012)

    Article  CAS  Google Scholar 

  27. Tabbasum, K, Reddy, D, Singh, V, Subasri, R, Garg, P, “Sol–Gel Nanocomposite Coatings for Preventing Biofilm Formation on Contact Lens Cases.” Transl. Vis. Sci. Technol., 10 (1) 4 (2021)

    Article  Google Scholar 

  28. Shirosaki, Y, Tsuru, K, Hayakawa, S, et al. “In Vitro Cytocompatibility of MG63 Cells on Chitosan-Organosiloxane Hybrid Membranes.” Biomaterials, 26 485–493 (2005)

    Article  CAS  Google Scholar 

  29. Gouvei, Z, Perinpanayagam, H, Zhu, J, “Development of Robust Chitosan-Silica Class II Hybrid Coatings with Antimicrobial Properties for Titanium Implants.” Coatings, 10 534–554 (2020)

    Article  Google Scholar 

  30. Connell, S, Romer, F, et al. “Chemical Characterisation and Fabrication of Chitosan-Silica Hybrid Scaffolds with 3-Glycidoxypropyl Trimethoxysilane.” J. Mater. Chem. B, 2 668–680 (2014)

    Article  CAS  Google Scholar 

  31. Zhang, X, Zhu, W, He, G, et al. “Flexible and Mechanically Robust Superhydrophobic Silicone Surfaces with Stable Cassie-Baxter State.” J. Mater. Chem. A, 4 14180–14186 (2016)

    Article  CAS  Google Scholar 

  32. Song, F, Koo, H, Ren, D, “Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.” J. Dent. Res., 94 1027–1034 (2015)

    Article  CAS  Google Scholar 

  33. Manabe, K, Nishizawa, S, Shiratori, S, “Porous Surface Structure Fabricated by Breath Figures that Supresses Pseudomonas aeruginosa Biofilm Formation.” ACS Appl. Mater. Interfaces, 5 11900–11905 (2013)

    Article  CAS  Google Scholar 

  34. Perera-Costa, D, Bruque, M, et al. “Studying the Influence of Surface Topography on Bacterial Adhesion Using Spatially Organized Microtopographic Surface Patterns.” Langmuir, 30 4633–4641 (2014)

    Article  CAS  Google Scholar 

  35. Preedy, E, Preni, S, et al. “Surface Roughness Mediated Adhesion Forces Between Borosilicate Glass and Gram-Positive Bacteria.” Langmuir, 30 9466–9476 (2014)

    Article  CAS  Google Scholar 

  36. Yuan, Y, Hays, P, et al. “Surface Characteristics Influencing Bacterial Adhesion to Polymeric Substrates.” RSC Adv., 7 14254–14261 (2017)

    Article  CAS  Google Scholar 

  37. Fux, A, Shirtliff, M, et al. “Can Laboratory Reference Strains Mirror ‘Real-World’ Pathogenesis?” Trends Microbiol., 13 58–63 (2005)

    Article  CAS  Google Scholar 

  38. Mohammadinia, M, Rahmani, S, Eslami, G, Amiri, M, Aghaie, G, Tabatabaee, S, et al. “Contact Lens Disinfecting Solutions Antibacterial Efficacy: Comparison Between Clinical Isolates and the Standard ISO ATCC Strains of Pseudomonas aeruginosa and Staphylococcus aureus.” Eye, 26 327–330 (2011)

    Article  Google Scholar 

  39. Friedlander, S, Vlamakis, H, Kim, P, Khan, M, Kolter, R, Aizenberg, J, “Bacterial Flagella Explore Microscale Hummocks and Hollows to Increase Adhesion.” Proc. Natl. Acad. Sci. USA, 110 1–6 (2013)

    Article  Google Scholar 

  40. Pakharukova, N, Tuittila, M, Paavilainen, S, Malmi, H, Parilova, O, Teneberg, S, “Structural Basis for Acinetobacter baumannii Biofilm Formation.” Proc. Natl. Acad. Sci. USA, 115 5558–5563 (2018)

    Article  CAS  Google Scholar 

  41. Pakharukova, N, Garnett, J, Tuittila, M, Paavilainen, S, “Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis.” PLoS Pathog., 11 (11) 1–22 (2015)

    Article  Google Scholar 

  42. Oh, K, Yegin, Y, Yang, F, Zhang, M, Li, J, Huang, S, et al. “The Influence of Surface Chemistry on the Kinetics and Thermodynamics of Bacterial Adhesion.” Sci. Rep., 8 1–13 (2018)

    Article  Google Scholar 

  43. Truong, K, Lapovok, R, Estrin, S, Rundell, S, Wang, Y, Fluke, J, et al. “The Influence of Nano-Scale Surface Roughness on Bacterial Adhesion to Ultrafine-Grained Titanium.” Biomaterials, 31 3674–3683 (2010)

    Article  CAS  Google Scholar 

  44. Thewes, N, Thewes, A, Loskill, P, Peisker, H, Bischoff, M, Herrmann, M, et al. “Stochastic Binding of Staphylococcus aureus to Hydrophobic Surfaces.” Soft Matter, 11 8913–8919 (2015)

    Article  CAS  Google Scholar 

  45. Spengler, C, Maikranz, E, Santen, L, Jacobs, K, “Modeling Bacterial Adhesion to Unconditioned Abiotic Surfaces.” Front. Mech. Eng., 7 1–7 (2021)

    Article  Google Scholar 

  46. Yang, Y, Yang, S, Wang, Y, Zhang, S, Yu, Z, Tang, T, “Bacterial Inhibition Potential of Quaternised Chitosan-Coated Vicryl Absorbable Suture: An In Vitro and In Vivo Study.” J. Orthop. Transl., 8 49–61 (2017)

    Google Scholar 

  47. Clayton, R, Todd, M, Dowd, B, Aiello, E, “The Impact of Bisphenol A and Triclosan on Immune Parameters in the US Population, NHANES 2003–2006.” Environ. Health Perspect., 119 390–396 (2011)

    Article  CAS  Google Scholar 

  48. Goy, R, Britto, D, Assis, O, “A Review of the Antimicrobial Activity of Chitosan.” Polím. Ciênciae Tecnol., 19 241–247 (2009)

    Article  CAS  Google Scholar 

  49. Atay, H, "Antibacterial Activity of Chitosan-Based Systems." In: Functional Chitosan, pp. 457–489. Springer (2020)

Download references

Acknowledgment

The authors would like to thank the funding agency Department of Biotechnology (DBT) for supporting the work through grant no BT/PR31908/MED/29/1401/2019. The authors are also thankful to the Directors of their respective institutes for the constant support and motivation throughout the work.

Funding

Funding agency Department of Biotechnology (DBT) for supporting the work through grant no BT/PR31908/MED/29/1401/2019.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Susmita Chaudhuri, Prashant Garg or R. Subasri.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, R., Raju, K.R.C.S., Bhaskar, B. et al. Biofilm inhibiting nanocomposite coatings—a promising alternative to combat surgical site infections. J Coat Technol Res 19, 1697–1711 (2022). https://doi.org/10.1007/s11998-022-00642-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00642-w

Keywords

Navigation