Skip to main content

Advertisement

Log in

Synthesis, characterization and bactericidal activity of silica/silver core–shell nanoparticles

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silica/silver core–shell nanoparticles (NPs) were synthesized by coating silver NPs on silica core particles (size ~300 ± 10 nm) via electro less reduction method. The core–shell NPs were characterized for their structural, morphological, compositional and optical behavior using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and UV–Visible spectroscopy, respectively. The size (16–35 nm) and loaded amount of silver NPs on the silica core were found to be dependent upon reaction time and activation method of silica. The bactericidal activity of the NPs was tested by broth micro dilution method against both Bacillus subtilis (gram positive) and Escherichia coli ATCC25922 (gram negative) bacterium. The bactericidal activity of silica/silver core–shell NPS is more against E. coli ATCC25922, when compared to B. subtilis. The minimal inhibitory concentration of the core–shell NPs ranged from 7.8 to 250 μg/mL and is found to be dependent upon the amount of silver on silica, the core. These results suggest that silica/silver core–shell NPs can be utilized as a strong substitutional candidate to control pathogenic bacterium, which are otherwise resistant to antibiotics, making them applicable in diverse medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carlos Caro PMC, Klippstein R, Pozo D, Zaderenko AP. Silver nanoparticles: sensing and imaging applications. Silver Nanopart. 2010;. doi:10.5772/8513.

    Google Scholar 

  2. Welles AE. Silver nanoparticles: properties, characterization and applications. New York: Nova Science; 2010.

    Google Scholar 

  3. Abou El-Nour KMM, Eftaiha AA, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3(3):135–40. doi:10.1016/j.arabjc.2010.04.008.

    Article  Google Scholar 

  4. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B. 2009;74(1):328–35. doi:10.1016/j.colsurfb.2009.07.048.

    Article  Google Scholar 

  5. Prabhu S, Poulose E. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2(1):1–10. doi:10.1186/2228-5326-2-32.

    Article  Google Scholar 

  6. Quang Huy Tran VQN, Le Anh-Tuan. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci. 2013;4(3):033001. doi:10.1088/2043-6262/4/3/033001.

    Google Scholar 

  7. http://microbewiki.kenyon.edu/index.php/Silver_as_an_Antimicrobial_Agent#Silver_salts. Accessed 8 Aug 2013.

  8. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3(1):95–101.

    Article  Google Scholar 

  9. Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008;42(12):3066–74. doi:10.1016/j.watres.2008.02.021.

    Article  Google Scholar 

  10. Sukumaran Prabhu EKP. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2(32):1–10. doi:10.1186/2228-5326-2-32.

    Google Scholar 

  11. Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One. 2013;8(5):e64060.

    Article  Google Scholar 

  12. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–20. doi:10.1128/aem.02218-06.

    Article  Google Scholar 

  13. Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–8. doi:10.1007/s11051-008-9428-6.

    Article  Google Scholar 

  14. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M. Antimicrobial properties of a novel silver–silica nanocomposite material. Appl Environ Microbiol. 2009;75(9):2973–6. doi:10.1128/aem.01658-08.

    Article  Google Scholar 

  15. Akhavan O, Ghaderi E. Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr Appl Phys. 2009;9(6):1381–5. doi:10.1016/j.cap.2009.03.003.

    Article  Google Scholar 

  16. Mahltig B, Gutmann E, Reibold M, Meyer DC, Böttcher H. Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol–Gel Sci Technol. 2009;51(2):204–14. doi:10.1007/s10971-009-1972-8.

    Article  Google Scholar 

  17. Jasiorski M, Leszkiewicz A, Brzeziński S, Bugla-Płoskońska G, Malinowska G, Borak B, et al. Textile with silver silica spheres: its antimicrobial activity against Escherichia coli and Staphylococcus aureus. J Sol–Gel Sci Technol. 2009;51(3):330–4. doi:10.1007/s10971-009-1902-9.

    Article  Google Scholar 

  18. Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T. Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids Surf B. 2009;74(1):304–8. doi:10.1016/j.colsurfb.2009.07.037.

    Article  Google Scholar 

  19. Suchita Kalele SWG. Nanoshell particles: synthesis, properties and applications. Curr Sci. 2006;91(8):1038–105.

    Google Scholar 

  20. Devi P, Vishal, Singla ML. Effect of surfactant concentration, solvents and particle size on ∏: a isotherm of silica nanoparticles. Mater Lett. 2013;107:107–10. doi:10.1016/j.matlet.2013.05.125.

    Article  Google Scholar 

  21. Kobayashi Y, Salgueiriño-Maceira V, Liz-Marzán LM. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chem Mater. 2001;13(5):1630–3. doi:10.1021/cm001240g.

    Article  Google Scholar 

  22. Christy AA. Effect of heat on the adsorption properties of silica gel. Int J Eng Technol. 2012;4(4):484–8.

    Article  Google Scholar 

  23. Jiang Z-J, Liu C-Y. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J Phys Chem B. 2003;107(45):12411–5. doi:10.1021/jp035060g.

    Article  Google Scholar 

  24. Taglietti A, Diaz Fernandez YA, Amato E, Cucca L, Dacarro G, Grisoli P, et al. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir. 2012;28(21):8140–8. doi:10.1021/la3003838.

    Article  Google Scholar 

  25. Hernandez-Ortiz M, Acosta-Torres L, Hernandez-Padron G, Mendieta A, Bernal R, Cruz-Vazquez C, et al. Biocompatibility of crystalline opal nanoparticles. BioMed Eng Online. 2012;11(1):78.

    Article  Google Scholar 

  26. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82. doi:10.1016/j.jcis.2004.02.012.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to both CSIR-CSIO and IIT Roorkee for infrastructural and experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Jeevanandam or M. L. Singla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, P., Patil, S.D., Jeevanandam, P. et al. Synthesis, characterization and bactericidal activity of silica/silver core–shell nanoparticles. J Mater Sci: Mater Med 25, 1267–1273 (2014). https://doi.org/10.1007/s10856-014-5165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5165-9

Keywords

Navigation