Skip to main content

Advertisement

Log in

Assessment and comparison of surface chemical composition and oxide layer modification upon two different activation methods on a cocrmo alloy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study investigated the effect of two different activation methods on the surface chemical composition of a CoCrMo-alloy. The activation was performed with oxygen plasma (OP) or nitric acid (NA). The surface physical–chemical properties were thoroughly characterized by means of several analytical techniques: X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), zinc-complex substitution technique, contact angle, and interferometry. The surface modification was evaluated by assessing contamination removal, the “active” hydroxyl groups (OH-act) present at the surface, the metal oxide ratio (CoyO x /CryO x ) and changes in the chemical composition and topography of the oxide layer. XPS experimental data showed for both methods (OP and NA) a significant decrease of the carbon contents (C 1s) associated with contaminants and at the same time changes in the atomic composition of the oxide layer (O 1s). In addition, the O 1s XPS spectra showed differences between the percentage of OH before and after OP or NA treatment, leading to the conclusion that both methods are effective for surface “cleaning” and activation. These results were further investigated and corroborated by ToF-SIMS analysis and zinc complex substitution technique. The general conclusion was that NA is more efficient in terms of contaminants removal and generation of accessible OH-act present at the surface and without altering the native metal oxide ratio (CoyO x /CryO x ) considered to be essential for biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bellefontaine G. The corrosion of CoCrMo alloys for biomedical. M.Res. thesis, University of Birmingham; 2010.

  2. Kocijan A, Milosev I, Pihlar B. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis. J Mater Sci Mater Med. 2004;15:643–50.

    Article  Google Scholar 

  3. Teoh S. Fatigue of biomaterials: a review. Int J Fatigue [Internet]. 2000;22:825–37. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0142112300000529.

    Google Scholar 

  4. Fazel-Rezai R, editor. In: Biomedical engineering—from theory to applications. Rijeka, Croatia: Intech; 2011. p. 411–42.

  5. Walter LR, Marel E, Harbury R, Wearne J. Distribution of chromium and cobalt ions in various blood fractions after resurfacing hip arthroplasty. J Arthroplasty. 2008;23:814–21.

    Article  Google Scholar 

  6. Poh CK, Shi Z, Tan XW, Liang ZC, Foo XM, Tan HC, Neoh KG, Wang W. Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth. J Orthop Res. 2011;29:1424–34.

    Article  Google Scholar 

  7. Müller R, Abke J, Schnell E, Scharnweber D, Kujat R, Englert C, Taheri D, Nerlich M, Angele P. Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials. 2006;27:4059–68.

    Article  Google Scholar 

  8. Kyomoto M, Iwasaki Y, Moro T, Konno T, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. High lubricious surface of cobalt–chromium–molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine). Biomaterials. 2007;28:3121–30.

    Article  Google Scholar 

  9. Castellanos MI, Mas C, Serra X, Trepat X, Gil FX, Manero JM, Pegueroles M. 25th European Conference on Biomaterials; 2013.

  10. Puleo DA. Biochemical surface modification of Co–Cr–Mo. Biomaterials. 1996;17:217–22.

    Article  Google Scholar 

  11. Paredes V. Caracterización y optimización de superficies biomiméticas para regeneración de tejido óseo. PhD thesis, Universidad Politécnica de Cataluña; 2012. p. 251.

  12. Tanaka Y, Saito H, Tsutsumi Y, Doi H, Imai H, Hanawa T. Active hydroxyl gtroups on surface oxide film of titanium, 316L stainless steel, and cobalt–chromium–molybdenum alloy and its effect on the immobilization of poly(ethylene glycol). Mater Trans. 2008;49:805–11.

    Article  Google Scholar 

  13. Sakamoto H, Hirohashi Y, Saito H, Doi H, Tsutsumi Y, Suzuki Y, Noda K, Hanawa T. Effect of active hydroxyl groups on the interfacial bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane. Dent Mater J. 2008;27:81–92.

    Article  Google Scholar 

  14. Salvati L, Yang SX. Ultra-passivation of chromium containing alloy and methods of producing same. Patent US20120239157 A1; 2012.

  15. Lin H. Changes in the surface oxide composition of Co–Cr–Mo implant alloy by macrophage cells and their released reactive chemical species. Biomaterials. 2004;25:1233–8.

    Article  Google Scholar 

  16. Strandman E, Landt H. Oxidation resistance of dental chromium–cobalt alloys. Quintessence Dent Technol. 1982;6(1):67–74.

    Google Scholar 

  17. Montero-Ocampo C, Hidalgo Badillo JA. EIS study of the electrochemical behavior of the Co–Cr–Mo alloy in borate solutions. ECS Trans. 2008;11(21):69–78.

    Article  Google Scholar 

  18. Smith DC, Pilliar RM, McIntyre NS. Dental implant materials. II, Preparative procedures and surface spectroscopic studies. J Biomed Mater Res. 2004;25(9):1069–84.

    Article  Google Scholar 

  19. Moulder JF, Stickle WF, Sobol PE, Bombet KD. Handbook of X Ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of xps data. Eden Prairie: Physical Electronics Division; 1995.

    Google Scholar 

  20. Briggs D, Wanger CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE. Handbook of X-ray photoelectron spectroscopy. Surface and interface analysis. Minnesota: Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie; 1979.

  21. Belu AM, Graham DJ, Castner DG. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003;24:3635–53.

    Article  Google Scholar 

  22. Mani G, Feldman MD, Oh S, Agrawal CM. Surface modification of cobalt–chromium–tungsten–nickel alloy using octadecyltrichlorosilanes. Appl Surf Sci. 2009;15(255):5961–70.

    Article  Google Scholar 

  23. Variola F, Vetrone F, Richert L, Jedrzejowski P, Yi JH, Zalzal S, Clair S, Sarkissian A, Perepichka DF, Wuest JD, Rosei F, Nanci A. Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. Small. 2009;5(9):996–1006.

    Article  Google Scholar 

  24. Matinlinna JP, Laajalehto K, Laiho T, Kangasniemi I, Lassila LVJ, Vallittu PK. Surface analysis of Co–Cr–Mo alloy and Ti substrates silanized with trialkoxysilanes and silane mixtures. Surf Interf Anal. 2004;36:246–53.

    Article  Google Scholar 

  25. Huang N, Leng YX, Yang P, Chen JY, Sun H, Wan GJ, et al. Plasma surface modification of biomaterials applied for cardiovascular devices. The 30th International Conference on Plasma Science, 2003. ICOPS 2003. IEEE Conference Record–Abstracts. IEEE; 2002. p. 439.

  26. Mastrangelo F. Self-assembled monolayers (SAMs): which perspectives in implant dentistry? J Biomater Nanobiotechnol. 2011;02:533–43.

    Article  Google Scholar 

  27. Cumpson P. Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J Electron Spectrosc Relat Phenom. 1995;31(73):25–52.

    Article  Google Scholar 

  28. Briggs D, Seah MP, editors. Practical surface analysis by Auger and photoelectron spectroscopy. Chichester: Wiley; 1983. p. 533.

  29. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H. Immobilization of the cell-adhesive peptide Arg–Gly–Asp–Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med. 2007;8:867–72.

    Article  Google Scholar 

  30. Hanawa T, Hiromoto S, Asami K. Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci. 2001;183:68–75.

    Article  Google Scholar 

  31. Pegueroles M. Interactions between titanium surfaces and biological components. PhD thesis, Universidad Politécnica de Cataluña; 2009. p. 263.

  32. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implant Res. 2009;20(4):172–84.

    Article  Google Scholar 

  33. Viornery C, Chevolot Y, Léonard D, Aronsson BO, Péchy P, Mathieu HJ, Descouts P, Grätzel M. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir. 2002;18:2582–9.

    Article  Google Scholar 

  34. Hanawa T. Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci. 2001;12(183):68–75.

    Article  Google Scholar 

  35. Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co–Cr–Mo Alloys. Biomaterials. 2005;26:4912–23.

    Article  Google Scholar 

  36. Rossi A, Elsener B, Hähner G, Textor M, Spencer ND. XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels. Surf Interf Anal. 2000;29:460–7.

    Article  Google Scholar 

  37. Aubriet F, Poleunis C, Bertrand P. Capabilities of static ToF-SIMS in the differentiation of first-row transition metal oxides. J Mass Spectrom. 2001;36(6):641–51.

    Article  Google Scholar 

  38. Fowler DE, Rogozik J. Oxidation of a cobalt chromium alloy: an X-ray photoemission spectroscopy study. J Vac Sci Technol A. 1988;6:928.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank: Ministry of Science and Innovation; Spain MAT2008-06887-C03-03 (Biofunctionalized surfaces for tissue repair and regeneration), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Salvagni.

Additional information

Authors V. Paredes and E. Salvagni equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paredes, V., Salvagni, E., Rodriguez, E. et al. Assessment and comparison of surface chemical composition and oxide layer modification upon two different activation methods on a cocrmo alloy. J Mater Sci: Mater Med 25, 311–320 (2014). https://doi.org/10.1007/s10856-013-5083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5083-2

Keywords

Navigation