Skip to main content

Advertisement

Log in

Effect of surface roughness at elevated temperature and pressure on the oxidation behaviour of co-based alloy

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Co-based alloys are promising to offer high-temperature corrosion resistance under extreme environmental conditions. Here, we report a novel approach that exploits the characteristics of the oxidation scale by making the specimens ground at three different levels to compare the effects of surface roughness in the presence and absence of external pressure. At a constant pressure of 2.5 MPa, the influence of surface roughness on the oxidation behaviour at an elevated temperature of 1050°C for 430 h has been investigated via scanning electron microscopy coupled with an energy-dispersive X-ray spectrometer and X-ray diffraction. The results have revealed that for rough surfaces the thickness of the oxide scale with Ra = 76.0 nm is significantly higher compared to a smooth surface with Ra = 13.0 nm. Furthermore, the oxide scale on the rough surface has some micro defects and protrusion compared to smooth surfaces. Besides that, under the applied external pressure and surface roughness, more pressure- and roughness-induced cracks and discontinuity have been observed on the oxide scale.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agarwal S and Ocken H 1990 Wear 140 223

    Article  CAS  Google Scholar 

  2. Aykut S, Golcu M, Semiz S and Ergur H 2007 Mater. Process. Technol. 190 199

    Article  CAS  Google Scholar 

  3. Berthod P 2005 Oxid. Met. 64 235

    Article  CAS  Google Scholar 

  4. Oliveira A S C, Villar M and Feder C G 2002 Appl. Surface Sci. 201 154

    Article  ADS  Google Scholar 

  5. Song P, Subanovic M, Toscano J, Naumenko D and Quadakkers W J 2011 Mater. Corros. Werkst. Korros. 62 699

    Article  CAS  Google Scholar 

  6. Huang T, Bergholz J, Mauer G, Vassen R, Naumenko D and Quadakkers W J 2018 Mater. High Temp. 35 97

    Article  CAS  Google Scholar 

  7. Li C, Huang T, Song P, Yuan X, Feng J, Lü K et al 2019 Corros. Sci. 163 108240

    Article  Google Scholar 

  8. Aykut S, Bagci E, Kentli A and Yazıcıoglu O 2007 Mater. Design 28 1880

    Article  CAS  Google Scholar 

  9. Shokrani A, Dhokia V and Newman S T 2012 Int. J. Mach. Tools Manuf. 57 83

    Article  Google Scholar 

  10. Akhtar A, Hook M and Reed R 2005 Metall. Mater. Trans. A 36 3001

    Article  Google Scholar 

  11. Raffaitin A, Monceau D, Andrieu E and Crabos F 2006 Acta Mater. 54 4473

    Article  ADS  CAS  Google Scholar 

  12. Ali S, Lü J, Song P, Ali R and Lu J 2019 Mater. Res. Express 6 1265b2

    Article  CAS  Google Scholar 

  13. Xavior M A and Adithan M 2009 J. Mater. Process. Technol. 209 900

    Article  CAS  Google Scholar 

  14. Bagci E and Aykut S 2006 J. Adv. Manuf. Technol. 29 940

    Article  Google Scholar 

  15. Wang X, Zhang X, Mu J, Liu H and Li J 2006 Shanghai J. Stomatol. 15 641

    CAS  Google Scholar 

  16. Pei H, Wen Z, Li Z, Zhang Y and Yue Z 2018 Appl. Surf. Sci. 440 790

    Article  ADS  CAS  Google Scholar 

  17. Uran S, Veal B, Grimsditch M, Pearson J and Berger A 2000 Oxid. Met. 54 73

    Article  CAS  Google Scholar 

  18. Zhang Z, Hou P, Gesmundo F and Niu Y 2006 Appl. Surf. Sci. 253 881

    Article  ADS  CAS  Google Scholar 

  19. Huang T, Naumenko D, Song P, Lu J and Quadakkers W J 2018 Oxid. Met. 90 671

    Article  CAS  Google Scholar 

  20. Chao J and González-Carrasco J L 1997 Mater. Sci. Eng. A 230 39

    Article  Google Scholar 

  21. Messaoudi K, Huntz A and Lesage B 1998 Mater. Sci. Eng. A 247 248

    Article  Google Scholar 

  22. Mougin J, Lucazeau G, Galerie A and Dupeux M 2001 Mater. Sci. Eng. A 308 118

    Article  Google Scholar 

  23. Huntz A M, Lefevre B and Cassino F 2000 Mater. Sci. Eng. A 290 190

    Article  Google Scholar 

  24. Song P and Lu J S 2013 Adv. Mater. Res. 662 383

    Article  Google Scholar 

  25. Nowak W 2018 Appl. Syst. Innov. 1 32

    Article  Google Scholar 

  26. Calvarin-Amiri G and MolinsR and Huntz A, 2000 Oxid. Met. 53 399

    Article  CAS  Google Scholar 

  27. Song P, Naumenko D, Vassen R, Singheiser L and Quadakkers W J 2013 Surf. Coat. Technol. 221 207

    Article  CAS  Google Scholar 

  28. Zang J J, Song P, Feng J, Xiong X, Chen R, Liu G L et al 2016 Corros. Sci. 112 170

    Article  CAS  Google Scholar 

  29. Madi Y, Salhi E, Charlot F, Galerie A and Wouters Y 2011 Oxid. Met. 75 167

    Article  CAS  Google Scholar 

  30. Müller F, Gorr B, Christ H J, Müller J, Butz B, Chen H et al 2019 Corros. Sci. 159 108161

    Article  Google Scholar 

  31. Baufeld B and Schmücker M 2005 Surf. Sci. 199 49

    CAS  Google Scholar 

  32. Limarga A M and Wilkinson D S 2007 Acta Mater. 55 189

    Article  ADS  CAS  Google Scholar 

  33. Evans H 1995 Int. Mater. Rev. 40 1

    Article  CAS  Google Scholar 

  34. Jiang S, Li H, Ma J, Xu C, Gong J and Sun C 2010 Corros. Sci. 52 2316

    Article  CAS  Google Scholar 

  35. Mohsen S, Abbas A and Akira K 2007 Trans. J. W. R. I. 36 41

    Google Scholar 

  36. Rapp R 1961 Acta Metal. 9 730

    Article  CAS  Google Scholar 

  37. Salam S, Hou P, Zhang Y D, Wang H F, Zhang C and Yang Z G 2015 Corros. Sci. 95 143

    Article  CAS  Google Scholar 

  38. Takei A and Nii K 1984 Trans. Jpn. Inst. 25 561

    Article  Google Scholar 

  39. Wagner C 1959 J. Electrochem. Soc. 63 772

    CAS  Google Scholar 

  40. Yan K, Guo H and Gong S 2014 Corros. Sci. 83 335

    Article  CAS  Google Scholar 

  41. Evans H 1983 Corros. Sci. 23 495

    Article  CAS  Google Scholar 

  42. Li Z, Qian S and Wang W 2011 Appl. Surf. Sci. 257 10414–10420

    Article  ADS  CAS  Google Scholar 

  43. Ostwald C and Grabke H J 2004 Corros. Sci. 46 1113

    Article  CAS  Google Scholar 

  44. Li C, Song P, Chen K, He X, Yu X and Lu J 2018 Coatings 8 332

    Article  Google Scholar 

  45. Mrowec S 1967 Corros. Sci. 7 563

    Article  CAS  Google Scholar 

  46. Zhou C H, Zhang Y and Pan R Y 2019 Key Eng. Mater. 793 67

    Article  Google Scholar 

  47. Li C, Song P, Feng J, Huang T, Lu K, Li Q et al 2019 Appl. Surf. Sci. 479 1178

    Article  ADS  CAS  Google Scholar 

  48. Platt P, Allen V, Fenwick M, Gass M and Preuss M 2015 Corros. Sci. 98 1

    Article  CAS  Google Scholar 

  49. Wang L, Jiang W G, Li X W, Dong J S, Zheng W, Feng H et al 2015 Acta Metall. Sin. Engl. Lett. 28 381

    Article  CAS  Google Scholar 

  50. Matsunaga K, Yoshiya M, Shibata N, Ohta H and Mizoguchi T 2022 J. Ceram. Soc. Jpn. 130 648

    Article  CAS  Google Scholar 

  51. Gibbs G and Hales R 1977 Corros. Sci. 17 487

    Article  CAS  Google Scholar 

  52. Taylor M, Evans H, Busso E and Qian Z 2006 Acta Mater. 54 3241

    Article  ADS  CAS  Google Scholar 

  53. Taylor M, Evans H, Ponton C and Nicholls J 2000 Surf. Coat Tech. 124 13

    Article  CAS  Google Scholar 

  54. Gaillet L, Benmedakhne S, Laksimi A and Moulin G 2003 J. Mater. Sci. 38 1479

    Article  ADS  CAS  Google Scholar 

  55. Nagl M and Evans W 1993 J. Mater. Sci. 28 6247

    Article  ADS  CAS  Google Scholar 

  56. Zhou C, Ma H and Wang L 2008 Oxid. Met. 70 287

    Article  CAS  Google Scholar 

  57. Wen Z, Zhao Y, Hou H, Tian J and Han P 2017 Superlattice Microst. 103 9

    Article  ADS  CAS  Google Scholar 

  58. Li C, Song P, Khan A, Feng J, Chen K, Zang J et al 2018 J. Alloys Compd. 739 690

    Article  CAS  Google Scholar 

  59. Brister K 1997 Rev. Sci. Instrum. 68 1629

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China under Grant No. 51961019, and the Yunnan Province Science Technology Major Project No. 2019ZE001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Khan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Ali, R., Khan, M. et al. Effect of surface roughness at elevated temperature and pressure on the oxidation behaviour of co-based alloy. Bull Mater Sci 47, 55 (2024). https://doi.org/10.1007/s12034-023-03114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03114-y

Keywords

Navigation