Skip to main content

Advertisement

Log in

Synthesis, characterization and antimicrobial activity of conjugates based on fluoroquinolon-type antibiotics and gelatin

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Different fluoroquinolon-type antibiotics were conjugated to gelatin with the aim to synthesize biomacromolecules with antimicrobial properties. The covalent linkage of the antibiotic was performed by a radical process involving the residues in the side chains of gelatin able to undergo oxidative modifications. The conjugation of antibiotic moieties onto the protein structure was confirmed by FT-IR, UV–Vis, fluorescence, and calorimetric analyses. Biocompatibility tests were performed on human bone marrow mesenchymal stromal cells and the antibacterial properties of bioactive polymers were investigated by appropriate tests against Klebsiella pneumoniae and Escherichia coli. With regard to the tests conducted in the presence of E. coli, a minimum inhibitory concentration (MIC) ranging from 0.05 to 0.40 μg mL−1 was recorded, while in the presence of K. pneumoniae this concentration varies from 0.10 to 1.60 μg mL−1. In all the conjugates, the drug moieties retain their biological activity and the MIC values are lower than the resistance parameters of fluoroquinolon-type antibiotics versus Enterobacteriacae. The collected data suggest a broad range of applications, from biomedical to pharmaceutical and food science for all conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities: what clinicians need to know. Clin Infect Dis. 2004;39:702–9.

    Article  Google Scholar 

  2. Lv W, Luo J, Deng Y, Sun YJ. Biomaterials immobilized with chitosan for rechargeable antimicrobial drug delivery. J Biomed Mat Res A. 2013;101A:447–55.

    Article  Google Scholar 

  3. Vasilev K, Griesser SS, Griesser HJ. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Proc Polym. 2011;8:1010–23.

    Article  Google Scholar 

  4. Caleb OJ, Mahajan PV, Al-Said FAJ, Opara UL. Modified atmosphere packaging technology of fresh and fresh-cut produce and the microbial consequences-A Review. Food Bioproc Technol. 2013;6:303–29.

    Article  Google Scholar 

  5. Pollini M, Paladini F, Catalano M, Taurino A, Licciulli A, Maffezzoli A, Sannino A. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J Mater Sci Mater Med. 2011;22:2005–12.

    Article  Google Scholar 

  6. Rahman MM, Pervez S, Nesa B, Khan MA. Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering. Polym Int. 2013;62:79–86.

    Article  Google Scholar 

  7. Garg T, Singh O, Arora S, Murthy RSR. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29:1–63.

    Article  Google Scholar 

  8. Scaffaro R, Botta L, Sanfilippo M, Gallo G, Palazzolo G, Puglia AM. Combining in the melt physical and biological properties of poly(caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments. Appl Microbiol Biotechnol. 2013;97:99–109.

    Article  Google Scholar 

  9. Bastarrachea L, Dhawan S, Sablani SS. Engineering properties of polymeric-based antimicrobial films for food packaging. Food Eng Rev. 2011;3:79–93.

    Article  Google Scholar 

  10. Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol Biol Med. 2011;7:2–39.

    Article  Google Scholar 

  11. Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mat. 2011;23:690–718.

    Article  Google Scholar 

  12. Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Progr Polym Sci. 2012;37:281–339.

    Article  Google Scholar 

  13. Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2:395–401.

    Article  Google Scholar 

  14. Gomathi N, Sureshkumar A, Neogi S. RF plasma-treated polymers for biomedical applications. Curr Sci. 2008;94:1478–86.

    Google Scholar 

  15. Zahedi P, Rezaeian I, Jafari SH. In vitro and in vivo evaluations of phenytoin sodium-loaded electrospun PVA, PCL, and their hybrid nanofibrous mats for use as active wound dressings. J Mater Sci. 2013;48:3147–59.

    Article  Google Scholar 

  16. Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WTS. Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem. 2009;20:71–7.

    Article  Google Scholar 

  17. Barnes K, Liang J, Worley SD, Lee J, Brouughton RM, Huang TS. Modification of silica gel, cellulose, and polyurethane with a sterically hindered N-halamine moiety to produce antimicrobial activity. J Appl Polym Sci. 2007;105:2306–13.

    Article  Google Scholar 

  18. Kriegel C, Arrechi A, Kit K, McClement DJ, Weiss J. Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit Rev Food Sci Nutr. 2008;48:775–97.

    Article  Google Scholar 

  19. Djagny KB, Wang Z, Xu S. Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr. 2001;41:481–92.

    Article  Google Scholar 

  20. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll. 2011;25:1813–27.

    Article  Google Scholar 

  21. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Controlled Release. 2005;109:256–74.

    Article  Google Scholar 

  22. Palsson BO, Bhatia SN. Tissue Engineering. 1st ed. New Jersey: Pearson Prentice Hall; 2004.

    Google Scholar 

  23. Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials. 2002;23:1205–12.

    Article  Google Scholar 

  24. Eastoe JE. The amino acid composition of mammalian collagen and gelatin. Biochem J. 1955;61:589–600.

    Google Scholar 

  25. Fernandes FM, Manjubala I, Ruiz-Hitzky E. Gelatin renaturation and the interfacial role of fillers in bionanocomposites. Phys Chem Chem Phys. 2011;13:4901–10.

    Article  Google Scholar 

  26. Peña C, de la Caba K, Eceiza A, Ruseckaite R, Mondragon I. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Biores Technol. 2010;101:993–1011.

    Article  Google Scholar 

  27. Lai J-Y. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J Mater Sci Mater Med. 2010;21:1899–901.

    Article  Google Scholar 

  28. Law B, Tung C-H. Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. Biocon Chem. 2009;20:1683–95.

    Article  Google Scholar 

  29. Spizzirri UG, Parisi OI, Iemma F, Cirillo G, Puoci F, Curcio M, Picci N. Antioxidant-polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydr Polym. 2010;79:333–40.

    Article  Google Scholar 

  30. Iemma F, Puoci F, Curcio M, Parisi OI, Cirillo G, Spizzirri UG, Picci N. Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. J Appl Polym Sci. 2010;115:784–9.

    Article  Google Scholar 

  31. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules. 2009;10:1923–30.

    Article  Google Scholar 

  32. Cirillo G, Vittorio O, Hampel S, Spizzirri UG, Picci N, Iemma F. Incorporation of carbon nanotubes into a gelatin–catechin conjugate: innovative approach for the preparation of anticancer materials. Int J Pharm. 2013;446:176–82.

    Article  Google Scholar 

  33. Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273.

    Google Scholar 

  34. Kaye KS, Auwaerter P, Bosso JA, Dean NC, Doern GV, Kays MB, Pogue JM, Ritchie DJ, Wispelwey B. Strategies to address appropriate fluoroquinolone use in the hospital. Hosp Pharm. 2010;45:844–53.

    Article  Google Scholar 

  35. Namboodiri SS, Opintan JA, Lijek RS, Newman MJ, Okeke IN. Quinolone resistance in Escherichia coli from Accra, Ghana. BMC Microbiol. 2011;11:44.

    Article  Google Scholar 

  36. Wu SS, Chein CY, Wen YHJ. Analysis of ciprofloxacin by a simple high-performance liquid chromatography method. Chromatogr Sci. 2008;46:490–5.

    Article  Google Scholar 

  37. Tozo GCG, Salgado HRN. Determination of lomefloxacin in tablet preparations by liquid chromatography. J AOAC Int. 2006;89:1305–8.

    Google Scholar 

  38. Gao XX, Yao GC, Guo N, An F, Guo XJ. A simple and rapid high performance liquid chromatography method to determine levofloxacin in human plasma and its use in a bioequivalence study. Drug Discov Ther. 2007;1:136–40.

    Google Scholar 

  39. Vittorio O, Cirillo G, Iemma F, Di Turi G, Jacchetti E, Curcio M, Barbuti S, Funel N, Parisi OI, Puoci F, Picci N. Dextran-catechin conjugate: a potential treatment against the pancreatic ductal adenocarcinoma. Pharm Res. 2012;29:2601–14.

    Article  Google Scholar 

  40. Santoke H, Song W, Cooper WJ, Greaves J, Miller GE. Free-radical-induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: kinetic studies and degradation mechanism. J Phys Chem A. 2009;113:7846–51.

    Article  Google Scholar 

  41. Johnson JR, Gajewski A, Lesse AJ, Russo TA. Extraintestinal pathogenic escherichia coli as a cause of invasive nonurinary infections. J Clin Microbiol. 2003;41:5798–802.

    Article  Google Scholar 

  42. Bousquet A, Malfuson J-V, Sanmartin N, Konopacki J, Macnab C, Souleau B, de Revel T, Elouennass M, Samson T, Soler C, Foissaud V, Martinaud C. An 8-year survey of strains identified in blood cultures in a clinical haematology unit. Clin Microbiol Infection. 2013;. doi:10.1111/1469-0691.12294.

    Google Scholar 

  43. Karageorgopoulos DE, Maraki S, Vatopoulos AC, Samonis G, Schito GC, Falagas ME. Antimicrobial activity of prulifloxacin in comparison with other fluoroquinolones against community-acquired urinary and respiratory pathogens isolated in Greece. Eur J Clin Microbiol Infect Dis. 2013;. doi:10.1007/s10096-013-1891-z.

    Google Scholar 

  44. Di Paolo A, Gori G, Tascini C, Danesi R, Del Tacca M. Clinical pharmacokinetics of antibacterials in cerebrospinal fluid. Clin Pharmacokinet. 2013;52:511–42.

    Article  Google Scholar 

  45. Pitout JDD. Extraintestinal pathogenic Escherichia coli: an update on antimicrobial resistance, laboratory diagnosis and treatment. Exp Rev Anti-Infect Ther. 2012;10:1165–76.

    Article  Google Scholar 

  46. Jiang D, Liu Y, Zhan Q. Etiological analysis of 216 cases of hospital-acquired infections in neurology intensive care unit. Chin J Infect Chemother. 2013;13:35–9.

    Google Scholar 

  47. Chen Y-H, Hsueh P-R. Changing bacteriology of abdominal and surgical sepsis. Curr Op Infect Dis. 2012;25:590–5.

    Article  Google Scholar 

  48. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 3.1, 2013. http://www.eucast.org.

  49. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. 1993.

Download references

Acknowledgments

This work was supported by University of Calabria funds. Financial support of Regional Operative Program (ROP) Calabria ESF 2007/2013—IV Axis Human Capital—Operative Objective M2—Action D.5 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umile Gianfranco Spizzirri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, G., Mauro, M.V., Spizzirri, U.G. et al. Synthesis, characterization and antimicrobial activity of conjugates based on fluoroquinolon-type antibiotics and gelatin. J Mater Sci: Mater Med 25, 67–77 (2014). https://doi.org/10.1007/s10856-013-5053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5053-8

Keywords

Navigation