Skip to main content
Log in

Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effect of SrO substitution for CaO in 50P2O5–10Na2–(40−x)CaO–xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marcolongo M, Ducheyne P, Lacourse WC. Surface reaction layer formation in vitro on a bioactive glass fiber/polymeric composite. J Biomed Mater Res. 1997;37:440–8.

    Article  CAS  Google Scholar 

  2. Pirhonen E, Törmälä P. Coating of bioactive glass 13–93 fibres with biomedical polymers. J Mater Sci. 2006;41:2031–6.

    Article  CAS  Google Scholar 

  3. Clupper DC, Hall MM, Gough JE, Hench LL. S520 and 45S5 glass fibers: bioactivity, mechanical properties, and osteoblast attachment. Tampa: Transactions of the Society for Biomaterials; 2002.

    Google Scholar 

  4. Bosch ME, Sanchez AJR, Rojas FS, Ojeda CB. Review: recent development in optical fiber biosensors. Sensors. 2007;7:797–859.

    Article  CAS  Google Scholar 

  5. Gholamzadeh B, Nobovati H. World of academy of science, engineering and technology, vol 42. New York: Fiber Optic Sensor; 2008. p. 297–307.

    Google Scholar 

  6. Hench LL, Andersson ÖH. Bioactive glasses. In: An introduction to bioceramics. June Wilson; 1993.

  7. Andersson ÖH, Karlsson KH. Corrosion of bioactive glass under various in vitro conditions. Advance in Biomaterials No 8. Amsterdam: Elsevier; 1990.

  8. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  9. Massera J, Fagerlund S, Hupa L, Hupa M. Crystallization behavior of the commercial bioactive glasses 45S5 and S53P4. J Am Ceram Soc. 2012;95:607–13.

    Article  CAS  Google Scholar 

  10. Clement J, Manero JM, Planell JA. Analysis of the structural changes of a phosphate glass during its dissolution in simulated body fluid. J Mater Sci Mater Med. 1999;10:729–32.

    Article  CAS  Google Scholar 

  11. Gapontsev VP, Matittsin SM, Isineev AA, Kravchencko VB. Erbium glass lasers and their applications. Opt Laser Technol. 1982;14:189–96.

    Article  CAS  Google Scholar 

  12. Ahmed AA, Ali AA, Mahmoud DAR, El-Fiqi AM. Preparation and characterization of antibacterial P2O5–CaO–Na2O–Ag2O glasses. J Biomed Mater Res A. 2011;98:132–42.

    CAS  Google Scholar 

  13. Salih V, Franks K, James M, Hastings GW, Knowles JC, Olsen I. Development of soluble glasses for biomedical use part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J Mater Med. 2000;11:615–20.

    Article  CAS  Google Scholar 

  14. Bunker BC, Arnold GW, Wilder JA. Phosphate glass dissolution in aqueous solutions. J Non Cryst Solids. 1984;64:291–316.

    Article  CAS  Google Scholar 

  15. Massera J, Bourhis K, Petit L, Couzi M, Hupa L, Hupa M, Videau JJ, Cardinal T. Study of the chemical durability of phosphate-based glasses in different solutions. J Phys Chem Solids. 2013;74:121–7.

    Article  CAS  Google Scholar 

  16. Isaac J, Nohra J, Lao J, Jallot E, Nedelec J-M, Berdal A, Sautier J-M. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cells Mater. 2011;21:130–43.

    CAS  Google Scholar 

  17. Vaughan J. The physiology of bone. 3rd ed. Oxford: Clarendon Press; 1981.

    Google Scholar 

  18. Curzon ME. The relation between caries prevalence and strontium concentrations in drinking water, plaque, and surface enamel. J Dent Res. 1985;64:1386–8.

    Article  CAS  Google Scholar 

  19. Toyoda S, Fujino S, Morinaga K. Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts. J Non Cryst Solids. 2003;321:169–74.

    Article  CAS  Google Scholar 

  20. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  21. Dietzel A. Entstehung von Inhomogenita¨ten in der Glasschmelze durch Verdampfung einzelner Bestandteile. Glasstech Berl. 1957;30:134–8.

    CAS  Google Scholar 

  22. Fredholm YC, Karpukhina N, Law RV, Hill RG. Strontium containing bioactive glasses: Glass structure and physical properties. J Non Cryst Solids. 2010;356:2546–51.

    Article  CAS  Google Scholar 

  23. Konidakis I, Varsamis C-PE, Kamitsos EI, Möncke D, Ehrt D. Structure and properties of mixed strontium-manganese metaphosphate glasses. J Phys Chem. 2010;114:9125–38.

    CAS  Google Scholar 

  24. Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV. Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. J Mater Chem. 2012;22:7395–402.

    Article  CAS  Google Scholar 

  25. Shih P-Y, Shiu H-M. Properties and structural investigations of UV-transmitting vitreous strontium zinc metaphosphate. Mater Chem Phys. 2007;106:222–6.

    Article  CAS  Google Scholar 

  26. GaO H, Tan T, Wang D. Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release. 2004;96:21–8.

    Article  CAS  Google Scholar 

  27. Moustafa YM, El-Egili K. Infrared spectra of sodium phosphate glasses. J Non Cryst Solids. 1998;240:144–53.

    Article  CAS  Google Scholar 

  28. Neel EAA, Chrzanowski W, Pickup DM, O’Deel LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC. Structure and properties of strontium-doped phosphate-based glasses. J Royal Soc Interface. 2009;6:435–46.

    Article  CAS  Google Scholar 

  29. Ilieva D, Jivov B, Bogachev G, Petkov C, Penkov I, Dimitriev Y. Infrared and Raman spectra of Ga2O3–P2O5 glasses. J Non Cryst Solids. 2001;283:195–202.

    Article  CAS  Google Scholar 

  30. Lee S, Obata A, Kasuga T. Ion release from SrO–CaO–TiO2–P2O5 glasses in Tris buffer solution. J Ceram Soc Jpn. 2009;117:935–8.

    Article  CAS  Google Scholar 

  31. Karakassides MA, Saranti A, Koutselas I. Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non Cryst Solids. 2004;347:69–79.

    Article  CAS  Google Scholar 

  32. Kalampounias AG. Short-time vibrational dynamics of metaphosphate glasses. J Phys Chem Solids. 2012;73:148–53.

    CAS  Google Scholar 

  33. Ciceo Lucacel R, Hulpus AO, Simon V, Ardelean I. Structural characterization of phosphate glasses doped with silver. J Non Cryst Solids. 2009;355:425–429.

    Google Scholar 

  34. Rajkumar G, Rajkumar M, Rajendran V, Samickannian Aravindan S. Influence of Ag2O in physico–chemical properties and HAp precipitation on phosphate-based glasses. J Am Ceram Soc. 2011;94:2918–25.

    Article  CAS  Google Scholar 

  35. Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials. 2004;25:491–9.

    Article  CAS  Google Scholar 

  36. Manupriya M, Thind KS, Singh K, Sharma G, Rajendran V. Influence of addition of Al2O3 on physical, structural, acoustical and in-vitro bioactive properties of phosphate glasses. Phys Status Solidi A. 2009;206:1447–55.

    Article  CAS  Google Scholar 

  37. Franks K, Abrahams I, Knowles JC. Development of soluble glasses for biomedical use part i: in vitro solubility measurement. J Mater Sci Mater Med. 2000;11:609–14.

    Article  CAS  Google Scholar 

  38. Driessens FCM, Verbeeck RMH. Biominerals. Boca Raton: CRC Press; 1990, pp. 86–89; 259–260.

  39. Pan HB, Li ZY, Lam WM, Wong JC, Darvell BW, Luk KD, Lu WW. Solubility of strontium-substituted apatite by solid titration. Acta Biomaterialia. 2009;5:1678–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the support of the Åbo Akademi Foundation and the National Center of Excellence Program by the Academy of Finland. The Academy of Finland is gratefully acknowledged for the financial support of the author (J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Massera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massera, J., Petit, L., Cardinal, T. et al. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses. J Mater Sci: Mater Med 24, 1407–1416 (2013). https://doi.org/10.1007/s10856-013-4910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4910-9

Keywords

Navigation