Skip to main content

Advertisement

Log in

Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A polycaprolactone (PCL) nanofibrous composite matrix having mesoporous bioactive glass nanoparticles (MBG) was fabricated using the electrospinning method, and the microstructural, physical and biological properties of the composite matrix were characterized. The fiber diameters of PCL, 5 % MBG/PCL (5 M-PCL) and 10 % MBG/PCL (10 M-PCL) were 575 ± 162 nm, 312 ± 134 nm and 321 ± 144 nm, respectively. The bioactivity of the composite matrix was evaluated by soaking the matrix in 1.5× simulated body fluid; the MBG/PCL matrix showed a better biomineralization capability than did the PCL matrix. The biological performance of the PCL and the MBG/PCL were evaluated using an in vitro culture of MG63 osteoblast-like cells. We found that the cell attachment and proliferation rates were significantly higher on the 10 M-PCL than on the PCL. Moreover, the expression of several genes, including ANX-V, type I collagen and OCN, ALP activity, the deposition of calcium, and the BSP protein, were also significantly higher on 10 M-PCL than PCL. These results indicated that MBG/PCL has the ability to support cell attachment, growth, and differentiation and can also yield high bioactivity. Therefore, MBG/PCL could be potentially applied in bone implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

    Article  Google Scholar 

  2. Dalby MJ, Childs S, Riehle MO, Johnstone HJ, Affrossman S, et al. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials. 2003;24:927–35.

    Article  CAS  Google Scholar 

  3. Newton D, Mahajan R, Ayres C, Bowman JR, Bowlin GL, et al. Regulation of material properties in electrospun scaffolds: role of cross-linking and fiber tertiary structure. Acta Biomater. 2009;5:518–29.

    Article  CAS  Google Scholar 

  4. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, et al. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone. 2009;45:4–16.

    Article  CAS  Google Scholar 

  5. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules. 2004;5:463–73.

    Article  CAS  Google Scholar 

  6. Heo SJ, Kim SE, Hyun YT, Kim DH, Lee HM, et al. In vitro evaluation of poly ε-caprolactone/hydroxyapatite composite as scaffolds for bone tissue engineering with human bone marrow stromal cells. Key Eng Mater. 2007;342–343:369–72.

    Article  Google Scholar 

  7. Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, et al. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells. 2009;27:126–37.

    Article  Google Scholar 

  8. Jo JH, Lee EJ, Shin DS, Kim HE, Kim HW, et al. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials. J Biomed Mater Res B Appl Biomater. 2009;9:213–20.

    Google Scholar 

  9. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.

    Article  CAS  Google Scholar 

  10. Vallet-Regi M, Ragel CV, Salinas AJ (2003) Glasses with medical applications. Eur J Inorg Chem 1029-1042.

  11. Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed Engl. 2004;43:5980–4.

    Article  CAS  Google Scholar 

  12. Li X, Shi J, Dong X, Zhang L, Zeng H. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J Biomed Mater Res A. 2008;84:84–91.

    Google Scholar 

  13. Chang YL, Stanford CM, Keller JC. Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite (HA)-enhanced bone formation. J Biomed Mater Res. 2000;52:270–8.

    Article  CAS  Google Scholar 

  14. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329:77–84.

    Article  CAS  Google Scholar 

  15. Lao L, Wang Y, Zhu Y, Zhang Y, Gao C. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med. 2011;22:1873–84.

    Article  CAS  Google Scholar 

  16. Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J Biomed Mater Res Part A. 2006;76:196–205.

    Article  Google Scholar 

  17. Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, et al. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous Mesoporous Mater. 2008;112:494–503.

    Article  CAS  Google Scholar 

  18. Gehron Robey P. The biochemistry of bone. Endocrinol Metab Clin North Am. 1989;18:858–902.

    CAS  Google Scholar 

  19. Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10:1160–8.

    CAS  Google Scholar 

  20. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol Biosci. 2006;6:70–7.

    Article  CAS  Google Scholar 

  21. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43:4403–12.

    Article  CAS  Google Scholar 

  22. Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers. 2010;2:728–65.

    Article  CAS  Google Scholar 

  23. Kokubo T, Takadama H. Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants, In: Bäuerlein E, editor. Handbook of biomineralization: biological aspects and structure formation. Wiley-VCH Verlag GmbH, Weinheim, Germany. 2008;doi:10.1002/9783527619443.ch51.

  24. Oyane A, Uchida M, Choong C, Triffitt J, Jones J, et al. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid. Biomaterials. 2005;26:2407–13.

    Article  CAS  Google Scholar 

  25. Oyane A, Uchida M, Yokoyama Y, Choong C, Triffitt J, et al. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. J Biomed Mater Res A. 2005;75:138–45.

    Google Scholar 

  26. Yang F, Both SK, Yang X, Walboomers XF, Jansen JA. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater. 2009;5:3295–304.

    Article  CAS  Google Scholar 

  27. Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, Lopez-Noriega A, et al. High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater. 2008;20:3191–8.

    Article  CAS  Google Scholar 

  28. Choong C, Yuan S, Thian ES, Oyane A, Triffitt J. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation. J Biomed Mater Res Part A. 2012;100A:353–61.

    Article  CAS  Google Scholar 

  29. Osathanon T, Bespinyowong K, Arksornnukit M, Takahashi H, Pavasant P. Human osteoblast-like cell spreading and proliferation on Ti-6Al-7Nb surfaces of varying roughness. J Oral Sci. 2011;53:23–30.

    Article  CAS  Google Scholar 

  30. Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22:10885–8.

    Article  CAS  Google Scholar 

  31. Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26:5221–30.

    Article  CAS  Google Scholar 

  32. Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, et al. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507.

    Article  CAS  Google Scholar 

  33. Wei J, Heo SJ, Kim DH, Kim SE, Hyun YT, et al. Comparison of physical, chemical and cellular responses to nano- and micro-sized calcium silicate/poly(epsilon-caprolactone) bioactive composites. J R Soc Interface. 2008;5:617–30.

    Article  CAS  Google Scholar 

  34. Brown EM. Biology of extracellular Ca2+-sensing receptor (CaR). In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. 2nd ed. San Diego: Academic Press; 2002. p. 371–88.

    Chapter  Google Scholar 

  35. Dvorak MM, Riccardi D. Ca2+ as an extracellular signal in bone. Cell Calcium. 2004;35:249–55.

    Article  CAS  Google Scholar 

  36. Duncan RL, Akanbi KA, Farach-Carson MC. Calcium signals and calcium channels in osteoblastic cells. Semin Nephrol. 1998;18:178–90.

    CAS  Google Scholar 

  37. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:455–84.

    Article  Google Scholar 

  38. Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, et al. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films. Biomaterials. 2009;30:2199–208.

    Article  CAS  Google Scholar 

  39. von der Mark K, Mollenhauer J. Annexin V interactions with collagen. Cell Mol Life Sci. 1997;53:539–45.

    Article  Google Scholar 

  40. Krocker D, Perka C, Tuischer J, Funk J, Tohtz S, et al. Effects of tacrolimus, cyclosporin A and sirolimus on MG63 cells. Transpl Int. 2006;19:563–9.

    Article  CAS  Google Scholar 

  41. Anderson HC, Garimella R, Tague SE. The role of matrix vesicles in growth plate development and biomineralization. Front Biosci. 2005;10:822–10837.

    Article  CAS  Google Scholar 

  42. Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit Rev Oral Biol Med. 1999;10:79–98.

    Article  CAS  Google Scholar 

  43. Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone. 2007;41:462–73.

    Article  CAS  Google Scholar 

  44. Ogata Y. Bone sialoprotein and its transcriptional regulatory mechanism. J Periodontal Res. 2008;43:127–35.

    Article  CAS  Google Scholar 

  45. Poser JW, Esch FS, Ling NC, Price PA. Isolation and sequence of the vitamin K-dependent protein from human bone. Undercarboxylation of the first glutamic acid residue. J Biol Chem. 1980;255:8685–91.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of Taiwan for financial supporting this research under contract no. 99-2320-B-019-002-MY3 and 100-2113-M-019-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Yin Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HM., Lin, YH. & Hsu, FY. Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering. J Mater Sci: Mater Med 23, 2619–2630 (2012). https://doi.org/10.1007/s10856-012-4734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4734-z

Keywords

Navigation