Skip to main content

Advertisement

Log in

Surface modification of titanium by hydrothermal treatment in Mg-containing solution and early osteoblast responses

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Surface modification on titanium was carried out in order to improve its bioactivity. Pure titanium was hydrothermally treated in distilled water and 0.1 M MgCl2 solutions at 200°C for 24 h. Surface morphology, roughness, wettability and chemical composition were characterized before and after treatment. Bovine serum albumin was used as model to study protein adsorption. MC3T3-E1 cells were cultured and initial cell attachment, morphology, proliferation were evaluated. After hydrothermal treatment, nano-sized precipitations were observed and samples showed superhydrophilicity. Magnesium (Mg) was immobilized into titanium surface by hydrothermal treatment. Protein adsorption was significantly increased on Mg-containing samples. Cell attachment was improved and cell spreading was enhanced on Mg-containing samples compared with untreated or those treated in distilled water. Increased early cellular attachment on the MgTi surface resulted in subsequent increase of number of proliferated cells. Hydrothermal treatment in MgCl2 solution was expected to be an effective method to fabricate titanium implant with good bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg. 1977;16:1–132.

    Google Scholar 

  2. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  3. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155–70.

    Article  CAS  Google Scholar 

  4. Klein CPAT, Pasta P, Wolke JGC, de Blieck-Hogervorst JMA, de Groot K. Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetra-calcium phosphate, hydroxyapatite and α-tricalcium phosphate. Biomaterials. 1994;15:146–50.

    Article  CAS  Google Scholar 

  5. Hayashi K, Inadome T, Tsumura H, Nakashima Y, Sugioka Y. Effect of surface roughnessof hydroxyapatite-coated titanium on the bone-implant intereface shear strength. Biomaterials. 1994;15:1187–91.

    Article  CAS  Google Scholar 

  6. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  7. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12:155–63.

    Article  CAS  Google Scholar 

  8. Li PJ, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res. 1994;28:7–15.

    Article  CAS  Google Scholar 

  9. Cochran DL, Nummikoski PV, Higginbottom FL, Hermann JS, Makins SR, Buser D. Evaluation of an endosseous titanium implant with a sandblasted and acid-etched surface in the canine mandible: radiographic results. Clin Oral Implants Res. 1996;7:240–52.

    Article  CAS  Google Scholar 

  10. Shi XX, Xu LL, Wang QL. Porous TiO2 film prepared by micro-arc oxidation and its electrochemical behaviors in Hank’s solution. Surf Coat Technol. 2010;205:1730–5.

    Article  CAS  Google Scholar 

  11. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak JY. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–75.

    Article  CAS  Google Scholar 

  12. Nakagawa M, Yamazoe J. Effect of CaCl2 hydrothermal treatment on the bone bond strength and osteoconductivity of Ti-0.5Pt and Ti-6Al-4V-0.5Pt alloy implants. J Mater Sci Mater Med. 2009;20:2295–303.

    Article  CAS  Google Scholar 

  13. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.

    Article  CAS  Google Scholar 

  14. Liu CC, Yeh JK, Aloia JF. Magnesium directly stimulates osteoblast proliferation. J Bone Miner Res. 1988;3:S104–12.

    Google Scholar 

  15. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int. 2003;72:32–41.

    Article  CAS  Google Scholar 

  16. Cohen L, Laor A, Kitzes R. Bone magnesium, crystallinity index and state of body magnesium in subjects with senile osteoporosis, maturity-onset diabetes and women treated with contraceptive preparations. Magnesium. 1983;2:70–5.

    Google Scholar 

  17. Nakagawa M, Zhang L, Udoh K, Matsuya S, Ishikawa K. Effects of hydrothermal treatment with CaCl2 solution on surface property and cell response of titanium implants. J Mater Sci Mater Med. 2005;16:985–91.

    Article  CAS  Google Scholar 

  18. Wälivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P. Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials. 1994;15:827–34.

    Article  Google Scholar 

  19. Puleo DA, Nanci A. Understanding and controlling the bone implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  Google Scholar 

  20. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  21. Lencka MM, Riman RE. Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates. Chem Mater. 1995;7:18–25.

    Article  CAS  Google Scholar 

  22. Pinceloup P, Courtois C, Vicens J, Leriche A, Thierry B. Evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders. J Eur Ceram Soc. 1999;19:973–7.

    Article  CAS  Google Scholar 

  23. Xu H, Gao L. New evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. Mater Lett. 2002;57:490–4.

    Article  CAS  Google Scholar 

  24. Cheng FT, Shi P, Man HC. A preliminary study of TiO2 deposition on NiTi by a hydrothermal method. Surf Coat Technol. 2004;187:26–32.

    Article  CAS  Google Scholar 

  25. Hamad K, Kon M, Hanawa T, Yokoyama K, Miyamoto Y, Asaoka K. Hydrothermal modification of titanium surface in calcium solutions. Biomaterials. 2002;23:2265–72.

    Article  Google Scholar 

  26. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Photogeneration of highly amphiphilic TiO2 Surfaces. Adv Mater. 1998;10:135–8.

    Article  Google Scholar 

  27. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.

    Article  CAS  Google Scholar 

  28. Hosono E, Matsuda H, Honma I, Ichihara M, Zhou H. Synthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation. Langmuir. 2007;23:7447–50.

    Article  CAS  Google Scholar 

  29. Scharnweber D, Schlottig F, Oswald S, Becker K, Worch H. How is wettability of titanium surfaces influenced by their preparation and storage conditions? J Mater Sci Mater Med. 2010;21:525–32.

    Article  CAS  Google Scholar 

  30. Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials. 2009;30:1015–25.

    Article  CAS  Google Scholar 

  31. Sul YT, Johansson C, Chang BS, Byon ES, Jeong Y. Bone tissue responses to Mg-incorporated oxidized implants and machine-turned implants in the rabbit femur. J Appl Biomater Biomech. 2005;3:18–28.

    CAS  Google Scholar 

  32. Cho LR, Kim DG, Kim JH, Byon ES, Jeong YS, Park CJ. Bone response of Mg ion-implanted clinical implants with the plasma source ion implantation method. Clin Oral Implants Res. 2010;21:848–56.

    Google Scholar 

  33. Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials. 2005;26:7579–86.

    Article  CAS  Google Scholar 

  34. Lu HH, Pollack SR, Ducheyne P. 45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a solution containing fibronectin. J Biomed Mater Res. 2001;54:454–61.

    Article  CAS  Google Scholar 

  35. Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res. 2001;57:258–67.

    Article  CAS  Google Scholar 

  36. Arima Y, Iwata H. Effect of wettability and surface functional groups onprotein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–82.

    Article  CAS  Google Scholar 

  37. Wolf C, Lai CS. Fluorescence energy transfer detects changes in fibronectin structure upon surface binding. Arch Biochem Biophys. 1989;268:536–45.

    Article  Google Scholar 

  38. Bergkvist M, Carlsson J, Oscarsson S. Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of atomic force microscopy. J Biomed Res A. 2003;64:349–56.

    Article  Google Scholar 

  39. Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials. 2004;25:4759–66.

    Article  CAS  Google Scholar 

  40. Zhao G, Schwartz Z, Wieland M, Rupp G, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74:49–58.

    CAS  Google Scholar 

  41. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51:475–83.

    Article  CAS  Google Scholar 

  42. Yun KD, Yang Y, Lim HP, Oh GO, Koh JT, Bae IH, Kim J, Lee KM, Park SW. Effect of nanotubular-micro-roughened titanium surface on cell response in vitro and osseointegration in vivo. Mater Sci Eng, C. 2010;30:27–33.

    Article  CAS  Google Scholar 

  43. Gao L, Feng B, Wang J, Lu X, Liu D, Qu S, Weng J. Micro/nanostructural porous surface on titanium and bioactivity. J Biomed Mater Res B Appl Biomater. 2009;89:335–41.

    Google Scholar 

  44. Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–82.

    Article  CAS  Google Scholar 

  45. Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling. J Biomed Mater Res A. 2007;81:757–65.

    CAS  Google Scholar 

  46. Park JW, Kim YJ, Jang JH, An CH. In vitro biocompatibility of magnesium-incorporated submicro-porous titanium oxide surface produced by hydrothermal treatment. Appl Surf Sci. 2010;257:925–31.

    Article  CAS  Google Scholar 

  47. Park JW, An CH, Jeong SH, Suh JY. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone. Clin Oral Implants Res. 2012;23:294–300. doi:10.1111/j.1600-0501.2010.02144.x.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, as well as by the China Scholarship Council (CSC, No. 2009642007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Nakagawa, M., Kawachi, G. et al. Surface modification of titanium by hydrothermal treatment in Mg-containing solution and early osteoblast responses. J Mater Sci: Mater Med 23, 1281–1290 (2012). https://doi.org/10.1007/s10856-012-4596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4596-4

Keywords

Navigation