Skip to main content

Advertisement

Log in

Effects of hydrothermal treatment with CaCl2 solution on surface property and cell response of titanium implants

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In order to obtain early and good osteointegration after implantation of a titanium implant in the human body, the surface modified treatments using NaOH or H2O2 etc. were reported. In this study, titanium was hydrothermally treated with CaCl2 solutions at 200 C for 24hr (CaCl2-HT). Scanning electron microscope (SEM) observation clearly showed apatite deposition on the surface of CaCl2 HT treated titanium faster than other chemical treated titanium immersion in simulated body fluid. X-ray photoelectron spectroscopy (XPS) analysis demonstrated that Ti–O–Ca bonding was formed on titanium surface by hydrothermal treatment with CaCl2 solution. And it was revealed that thickness of TiO2, which was known to play important roles for the formation of bone-like apatite, became approximately three times thicker than as-polished titanium. The amount of initial attached MC3T3-E1 cells on as-polished and NaOH, H2O2 and this CaCl2 HT treated titanium were almost the same values. After 5 days incubation, the growth rate of MC3T3-E1 cells on CaCl2-HT treated titanium was significantly higher than that on other chemical treated titanium. The hydrothermal treatment with 10–20 mmol/L CaCl2 solution at 200 C was an effective method for the fabrication of titanium implant with good bioactivity and osteoconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. FILAGGI, N. A. COOMBS and R. M. PILLIAR, J. Biomed. Mater. Res. 25 (1991) 1211.

    Google Scholar 

  2. K. HAYASHI, T. MASHIMA and K. UENOYAMA, Biomaterials 20 (1999) 111.

    Article  CAS  Google Scholar 

  3. W. R. LACEFIELD, Ann. Biomed. Mater. Res. 523 (1988) 73.

    Google Scholar 

  4. L. M. BOULTON, P. J. GREGSON, M. TUKE and T. BALDWIN, Mate. Lett. 12 (1991) 1.

    CAS  Google Scholar 

  5. M. WEI, A. J. RUYS, B. K. MILTHORPE and C. C. SORRELL, J. Biomed. Mater. Res. 45 (1999) 11.

    Article  CAS  Google Scholar 

  6. H. MONMA, J. Mater. Sci. 29 (1994) 949.

    Article  CAS  Google Scholar 

  7. M. OGISO, Y. YAMASHITA and T. MATSUMOTO, J. Dent. Res. 77 (1997) 1426.

    Google Scholar 

  8. M. WEI, A. J. RUYS, M. V. SWAIN, S. H. KIM, B. K. MILTHORPE and C. C. SORRELL, J. Mater. Sci. Mater. Med. 10 (1999) 401.

    Article  CAS  Google Scholar 

  9. T. KOKUBO, F. MIYAJI, H. M. KIM and T. NAKMURA, J. Am. Ceram. Soc. 79 (1996) 1127.

    Article  CAS  Google Scholar 

  10. H. M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 32 (1996) 409.

    CAS  Google Scholar 

  11. Idem., J. Ceram. Soc. Japan 105 (1997) 111.

    CAS  Google Scholar 

  12. Idem., J. Mater. Sci. Mater. Med. 8 (1997) 341.

    CAS  Google Scholar 

  13. H. B. WEN, Q. LIU, J. R. DE WIJIN and K. DE GROOT, Biomaterials 19 (1998) 215.

    Article  CAS  Google Scholar 

  14. S. W. HA, K. L. ECKERT, E. WINTERMANTEL, K. GRUNER, M. GUECHEVA and H. VONMONT, J. Mater. Sci.: Mater. Med. 8 (1997) 881.

    CAS  Google Scholar 

  15. H. M. KIM, H. TAKADAMA, T. KOKUBO, S. NISHIGUCHI and T. NAKAMURA, Biomaterials 21 (2000) 353.

    CAS  Google Scholar 

  16. C. OHTSUKI, H. IIDA, S. HAYAKAWA and A. OSAKA, J. Biome. Mater. Res. 35 (1997) 39.

    CAS  Google Scholar 

  17. M. C. DE ANDRE, M. R. T. FILGUEIRAS and T. OGASAWARA, ibid. 46 (1999) 441.

    Google Scholar 

  18. S. NISHIGUCHI, H. KATO, H. FUJITA, M. OKA, H. M. KIM, T. KOKUBO and T. NAKAMURA, Biomaterials 22 (2001) 2525.

    Article  CAS  Google Scholar 

  19. X. X. WANG, S. HAYAKAWA, K. TSURU and A. OSAKA, J. Biomed. Mater. Res. 54 (2001) 172.

    Article  CAS  Google Scholar 

  20. H. TAKADAMA, H. M. KIM, T. KOKUBO and T. NAKAMURA, ibid. 57 (2001) 441.

    Article  CAS  Google Scholar 

  21. H. TAKADAMA, H. M. KIM, T. KOKUBO and T. NAKAMURA, ibid. 55 (2001) 185.

    Article  CAS  Google Scholar 

  22. T. HANAWA, M. KON, H. UKAI, K. MURAKAMI, Y. MIYAMOTO and K. ASAOKA, ibid. 34 (1997) 273.

    Article  CAS  Google Scholar 

  23. T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, ibid. 24 (1990) 721.

    CAS  Google Scholar 

  24. K. HAMADA, M. KON, T. HANAWA, K. YOKOYAMA, Y. MIYAMOTO and K. ASAOKA, Biomaterials 23 (2002) 2265.

    Article  CAS  Google Scholar 

  25. H. KODAMA, Y. AMAGI, S. KASAI and S. YAMAMOTO, Jpn. J. Oral Biol. 23 (1981) 899.

    Google Scholar 

  26. T. MOSSMAN, J Immunol Meth 65 (1983) 55.

    Google Scholar 

  27. B. FENG, J. Y. CHEN, S. K. QI, L. HE, J. Z. ZHAO and X. D. ZHANG, J. Mater. Sci. Mater. Med. 13 (2002) 457.

    Article  CAS  Google Scholar 

  28. K. S. HWANG, Y. H. LEE, B. A. KANG, S. B. KIM and J. S. OH, ibid. 14 (2003) 521.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, M., Zhang, L., Udoh, K. et al. Effects of hydrothermal treatment with CaCl2 solution on surface property and cell response of titanium implants. J Mater Sci: Mater Med 16, 985–991 (2005). https://doi.org/10.1007/s10856-005-4753-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4753-0

Keywords

Navigation