Skip to main content

Advertisement

Log in

Study of protein adsorption on octacalcium phosphate surfaces by molecular dynamics simulations

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study numerically studies absorption of human serum albumin (HSA) and basic protein lysozyme (LSZ) on crystallographic planes of octacalcium phosphate (OCP), an essential bioactive calcium phosphate. The molecular simulations include constructing atomic structure of OCP crystallographic planes and representative segments of HSA and LSZ with three different initiate orientations respect to OCP planes. The simulation reveals the dynamic process of the protein absorption. The absorption behavior of proteins is quantified by the interaction energy between proteins and OCP planes and the strain energy of proteins in absorption. The results show that absorption interaction energy of basic LSZ is higher than that of acidic HSA, which indicates that LSZ is more favorable to adsorb onto OCP surface than HSA. The interaction energies change with the OCP crystallographic planes, the trend of changes for both proteins are similar, that is OCP (001) > OCP (111) > OCP (110) > OCP (100), which is corrected with surface energy variation of crystallographic planes. The strain energy strongly depends on the orientations of the proteins before absorption, but weakly depends on crystallographic planes. The simulation results provide useful significant information for predicting/designing interface between bioceramic materials and organic tissues as well as for understanding the mechanism of the osteoinductivity at an atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yuan H, Yang Z, de Bruijn J, de Groot K, Zhang X. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials. 2001;22:2617–23.

    Article  CAS  Google Scholar 

  2. Hench L. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  CAS  Google Scholar 

  3. Zhang X, Zou P, Wu C. A study of hydroxyapatite ceramics ani its osteogenesis. In: Ravaglioli A, Krajewski A, editors. Bioceramics and the human body. London: Elsevier Applied Science; 1991. p. 408.

    Google Scholar 

  4. Yuan H, Kurashina K, de Bruijn J, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799–1806.

    Article  CAS  Google Scholar 

  5. Zhang X, Yuan H, De Groot K. The 6th world biomaterials congress. Hawaii: USA; 2000. p. 8.

    Google Scholar 

  6. Gray J. The interaction of proteins with solid surfaces. Curr Opin Struct Biol. 2004;14:110–15.

    Article  CAS  Google Scholar 

  7. Addadi L, Weiner S, Geva M. On how proteins interact with crystals and their effect on crystal formation. Z Kardiol. 2001;90:92–98.

    Article  Google Scholar 

  8. Dorozhkina SV, Dorozhkina EI. The influence of bovine serum albumin on the crystallization of calcium phosphates from a simulated body fluid. Colloids Surf. 2003;215:191–99.

    Article  Google Scholar 

  9. Liu Y, Hunziker E, Layrolle P, Van Blitterswijk C, Calvert P, de Groot K. Remineralization of demineralized albumin-calcium phosphate coatings. J Biomed Mater Res. 2003;67:1155–62.

    Article  CAS  Google Scholar 

  10. Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res. 2001;57:327–35.

    Article  CAS  Google Scholar 

  11. Rohanizadeh R, Padrines M, Bouler J, Couchourel D, Fortun Y, Daculsi G. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins. J Biomed Mater Res. 1998;42:530–39.

    Article  CAS  Google Scholar 

  12. Daculsi G, Pilet P, Cottrel M, Guicheux G. Role of fibronectin during biological apatite crystal nucleation: ultrastructural characterization. J Biomed Mater Res. 1999;47:228–33.

    Article  CAS  Google Scholar 

  13. Rohanizadeh R, Trecant-Viana M, Daculsi G. Ultrastructural study of apatite precipitation in implanted calcium phosphate ceramic: influence of the implantation site. Calcif Tissue Int. 1999;64:430–36.

    Article  CAS  Google Scholar 

  14. Santos C, Clarke R, Braden M, Guitian F, Davy K. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials. 2002;23:1897–1904.

    Article  CAS  Google Scholar 

  15. Zhou H, Wu T, Dong X, Wang Q, Shen J. Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochem Biophys Res Commun. 2007;361:91–96.

    Article  CAS  Google Scholar 

  16. Shen J, Wu T, Wang Q, Pan HH. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials. 2008;29:513–32.

    Article  CAS  Google Scholar 

  17. Bhowmik R, Katti K, Katti D. Molecular dynamics simulation of hydroxyapatite–polyacrylic acid interfaces. Polymer. 2007;48:664–74.

    Article  CAS  Google Scholar 

  18. Pan H, Tao J, Xu X, Tang R. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level. Langmuir. 2007;23:8972–81.

    Article  CAS  Google Scholar 

  19. Chen X, Wu T, Wang Q, Shen J. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface. Biomaterials. 2008;29:2423–32.

    Article  CAS  Google Scholar 

  20. Zhang H, Lu X, Leng Y, Fang L, Qu S, Feng B, Weng J, Wang J. Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomater. 2009;5:1169–81.

    Article  CAS  Google Scholar 

  21. Shen J, Wu T, Wang Q, Kang Y. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials. 2008;29:3847–55.

    Article  CAS  Google Scholar 

  22. Cruz F, Lopes J, Calado J. Molecular dynamics simulations of molten calcium hydroxyapatite. Fluid Phase Equilibria. 2006;241:51–58.

    Article  CAS  Google Scholar 

  23. Forte G, Grassi A, Marletta G. Molecular modeling of oligopeptide adsorption onto functionalized quartz surfaces. J Phys Chem B. 2007;111:11237–43.

    Article  CAS  Google Scholar 

  24. Ganazzoli F, Raffaini G. Computer simulation of polypeptide adsorption on model biomaterials. Phys Chem Chem Phys. 2005;7:3651–63.

    Article  CAS  Google Scholar 

  25. Chow L, Eanes E. Octacalcium phosphate. Basel: Karger; 2001.

    Google Scholar 

  26. Brown W. Octacalcium phosphate and hydroxyapatite: crystal structure of octacalcium phosphate. Nature. 1962;196:1048.

    Article  CAS  Google Scholar 

  27. Brown W, Eidelman N, Tomazic B. Octacalcium phosphate as a precursor in biomineral formation. Adv Dent Res. 1987;1:306–13.

    CAS  Google Scholar 

  28. Elliott J. Structures and chemistry of the apatites and other calcium orthophosphates. Studies in organic chemistry. Amsterdam: Elsevier; 1994.

    Google Scholar 

  29. Sun H. COMPASS:  an ab initio force-field optimized for condensed-phase applications–overview with details on alkane and benzene compounds. J. Phys. Chem. B. 1998;102:7338–64.

    Article  CAS  Google Scholar 

  30. Zhu X, Fan H, Zhao C, Lu J, Ikoma T, Tanaka J, Zhang X. Competitive adsorption of bovine serum albumin and lysozyme on characterized calcium phosphates by polyacrylamide gel electrophoresis method. J Mater Sci Mater Med. 2007;18:2243–49.

    Article  CAS  Google Scholar 

  31. Raffaini G, Ganazzoli F. Molecular dynamics simulation of the adsorption of a fibronectin module on a graphite surface. Langmuir. 2003;19:3403–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by National Natural Science Foundation of China (NSFC31070851)/Research Grants Council (RGC) of Hong Kong Joint Research Funding (N_HKUST601/08, 30831160509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kefeng Wang or Yang Leng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Leng, Y., Lu, X. et al. Study of protein adsorption on octacalcium phosphate surfaces by molecular dynamics simulations. J Mater Sci: Mater Med 23, 1045–1053 (2012). https://doi.org/10.1007/s10856-012-4570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4570-1

Keywords

Navigation