Skip to main content
Log in

Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous scaffolds that can prolong the release of bioactive factors are urgently required in bone tissue engineering. In this study, PLGA/gelatin composite microspheres (PGMs) were carefully designed and prepared by entrapping poly(l-lactide-co-glycolide) (PLGA) microspheres (PMs) in gelatin matrix. By mixing PGMs with PLGA solution directly, drug-loaded PLGA/carbonated hydroxyapatite (HAp)/PGMs composite scaffolds were successfully fabricated. In vitro release of fluorescein isothiocyanate-dextran (FD70S) as a model drug from the scaffolds as well as PMs and PGMs was studied by immersing samples in phosphate buffered saline (pH = 7.4) at 37°C for 32 days. Compared with PMs, PGMs and PLGA/HAp/PGMs scaffolds exhibited slow and steady release behavior with constant release rate and insignificantly original burst release. The swelling of PGMs, diffusion of drugs, and degradation of polymer dominated the release behaviors synergistically. The PLGA/HAp/PGMs scaffold offers a novel option for sequential or simultaneous release of several drugs in terms of bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24. doi:10.1038/nrm1858.

    Article  CAS  Google Scholar 

  2. Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliver Rev. 2008;60(2):229–42. doi:10.1016/j.addr.2007.08.038.

    Article  CAS  Google Scholar 

  3. Smeets R, Gerhards F, Stein J, Paz RMP, Vogt S, Pautke C, Weitz J, Kolk A. A novel hemostatic delivery device for thrombin: biodegradable poly(d, l-lactide-co-glycolide) 50:50 microspheres. J Biomed Mater Res A. 2011;96A(1):177–85. doi:10.1002/jbm.a.32970.

    Article  CAS  Google Scholar 

  4. Lee JW, Kang KS, Lee SH, Kim JY, Lee BK, Cho DW. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials. 2011;32(3):744–52. doi:10.1016/j.biomaterials.2010.09.035.

    Article  CAS  Google Scholar 

  5. Yang YF, Tang GW, Zhang H, Zhao YH, Yuan XB, Wang M, Yuan XY. Controllable dual-release of dexamethasone and bovine serum albumin from PLGA/β-tricalcium phosphate composite scaffolds. J Biomed Mater Res B Appl Biomater. 2011;96(1):139–51.

    Google Scholar 

  6. Adhirajan N, Shanmugasundaram N, Babu M. Gelatin microspheres cross-linked with EDC as a drug delivery system for doxycyline: development and characterization. J Microencapsul. 2007;24(7):659–71. doi:10.1080/02652040701500137.

    Article  Google Scholar 

  7. Habraken WJEM, Boerman OC, Wolke JGC, Mikos AG, Jansen JA. In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres. J Biomed Mater Res A. 2009;91A(2):614–22. doi:10.1002/Jbm.A.32263.

    Article  CAS  Google Scholar 

  8. Niu XF, Feng QL, Wang MB, Guo XD, Zheng QX. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release. 2009;134(2):111–7. doi:10.1016/j.jconrel.2008.11.020.

    Article  CAS  Google Scholar 

  9. Chan OCM, So KF, Chan BP. Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical crosslinking on release kinetics. J Control Release. 2008;129(2):135–43. doi:10.1016/j.jconrel.2008.04.011.

    Article  CAS  Google Scholar 

  10. Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E. Sequential release of bioactive IGF-I and TGF-beta(1) from PLGA microsphere-based scaffolds. Biomaterials. 2008;29(10):1518–25. doi:10.1016/j.biomaterials.2007.12.004.

    Article  CAS  Google Scholar 

  11. Jaklenec A, Wan E, Murray ME, Mathiowitz E. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials. 2008;29(2):185–92. doi:10.1016/j.biomaterials.2007.09.017.

    Article  CAS  Google Scholar 

  12. Luciani A, Coccoli V, Orsi S, Ambrosio L, Netti PA. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials. 2008;29(36):4800–7. doi:10.1016/j.biomaterials.2008.09.007.

    Article  CAS  Google Scholar 

  13. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495–505. doi:10.1016/j.actbio.2010.06.024.

    Article  CAS  Google Scholar 

  14. Wei GB, Jin QM, Giannobile WV, Ma PX. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release. 2006;112(1):103–10. doi:10.1016/j.jconrel.2006.01.011.

    Article  CAS  Google Scholar 

  15. Wei GB, Jin QM, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007;28(12):2087–96. doi:10.1016/j.biomaterials.2006.12.028.

    Article  CAS  Google Scholar 

  16. Feng K, Sun HL, Bradley MA, Dupler EJ, Giannobile WV, Ma PX. Novel antibacterial nanofibrous PLLA scaffolds. J Control Release. 2010;146(3):363–9. doi:10.1016/j.jconrel.2010.05.035.

    Article  CAS  Google Scholar 

  17. Tang GW, Yang YF, Sun AP, Song TT, Zhao YH, Yuan XB, Yuan XY, Fan YB, Wang M. Controlled release of dexamethasone from porous PLGA scaffolds under cyclic loading. Sci China Chem. 2010;53(3):594–8. doi:10.1007/s11426-010-0074-3.

    Article  CAS  Google Scholar 

  18. Yang YF, Tang GW, Zhang H, Zhao YH, Yuan XY, Fan YB, Wang M. Controlled release of BSA by microsphere-incorporated PLGA scaffolds under cyclic loading. Mater Sci Eng: C. 2011;31(2):350–6. doi:10.1016/j.msec.2010.10.006.

    Article  CAS  Google Scholar 

  19. Goraltchouk A, Scanga V, Morshead CM, Shoichet MS. Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release. J Control Release. 2006;110(2):400–7. doi:10.1016/j.jconrel.2005.10.019.

    Article  CAS  Google Scholar 

  20. Ginty PJ, Barry JJA, White LJ, Howdle SM, Shakesheff KM. Controlling protein release from scaffolds using polymer blends and composites. Eur J Pharm Biopharm. 2008;68(1):82–9. doi:10.1016/j.ejpb.2007.05.023.

    Article  CAS  Google Scholar 

  21. Wang XQ, Wenk E, Zhang XH, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release. 2009;134(2):81–90. doi:10.1016/j.jconrel.2008.10.021.

    Article  CAS  Google Scholar 

  22. Cai S, Yu XZ, Xiao ZY, Xu GH, Lv H, Yao KD. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method. Ceram Int. 2007;33(2):193–6. doi:10.1016/j.ceramint.2005.09.001.

    Article  CAS  Google Scholar 

  23. Yang YF, Zhao J, Zhao YH, Wen L, Yuan XY, Fan YB. Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching. J Appl Polym Sci. 2008;109(2):1232–41. doi:10.1002/App.28147.

    Article  CAS  Google Scholar 

  24. Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7(43):209–27. doi:10.1098/rsif.2009.0379.

    Article  CAS  Google Scholar 

  25. Yang YF, Zhao YH, Tang GW, Li H, Yuan XY, Fan YB. In vitro degradation of porous poly(l-lactide-co-glycolide)/[beta]-tricalcium phosphate (PLGA/[beta]-TCP) scaffolds under dynamic and static conditions. Polym Degrad Stabil. 2008;93(10):1838–45. doi:10.1016/j.polymdegradstab.2008.07.007.

    Article  CAS  Google Scholar 

  26. Layman H, Spiga MG, Brooks T, Pham S, Webster KA, Andreopoulos FM. The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials. 2007;28(16):2646–54. doi:10.1016/j.biomaterials.2007.01.044.

    Article  CAS  Google Scholar 

  27. Chang JY, Lin JH, Yao CH, Chen JH, Lai TY, Chen YS. In vivo evaluation of a biodegradable EDC/NHS-cross-linked gelatin peripheral nerve guide conduit material. Macromol Biosci. 2007;7(4):500–7. doi:10.1002/mabi.200600257.

    Article  CAS  Google Scholar 

  28. Li JK, Wang N, Wu XS. A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery. J Pharm Sci-Us. 1997;86(8):891–5. doi:10.1021/js970084i.

    Article  CAS  Google Scholar 

  29. Liu HH, Zhang L, Shi PJ, Zou Q, Zuo Y, Li YB. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J Biomed Mater Res B. 2010;95B(1):36–46. doi:10.1002/jbm.b.31680.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Natural Science Foundation of China via grant Nos. 30828008 and 51073117 and also by the Scientific Research Foundation of Graduate School of Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, G., Zhang, H., Zhao, Y. et al. Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres. J Mater Sci: Mater Med 23, 419–429 (2012). https://doi.org/10.1007/s10856-011-4493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4493-2

Keywords

Navigation